DOI QR코드

DOI QR Code

Automated Training Database Development through Image Web Crawling for Construction Site Monitoring

건설현장 영상 분석을 위한 웹 크롤링 기반 학습 데이터베이스 구축 자동화

  • 황정빈 (서울대학교 건설환경공학부) ;
  • 김진우 (서울대학교 건설환경종합연구소) ;
  • 지석호 (서울대학교 건설환경공학부) ;
  • 서준오 (홍콩이공대학)
  • Received : 2019.09.10
  • Accepted : 2019.09.27
  • Published : 2019.12.01

Abstract

Many researchers have developed a series of vision-based technologies to monitor construction sites automatically. To achieve high performance of vision-based technologies, it is essential to build a large amount and high quality of training image database (DB). To do that, researchers usually visit construction sites, install cameras at the jobsites, and collect images for training DB. However, such human and site-dependent approach requires a huge amount of time and costs, and it would be difficult to represent a range of characteristics of different construction sites and resources. To address these problems, this paper proposes a framework that automatically constructs a training image DB using web crawling techniques. For the validation, the authors conducted two different experiments with the automatically generated DB: construction work type classification and equipment classification. The results showed that the method could successfully build the training image DB for the two classification problems, and the findings of this study can be used to reduce the time and efforts for developing a vision-based technology on construction sites.

건설현장 영상 자동 모니터링을 목적으로 많은 연구자들이 영상분석기술을 활발히 개발하고 있다. 높은 성능의 영상분석기술을 개발하기 위해서는 다량의 고품질 학습용 이미지 데이터베이스(Database, DB)를 구축해야 한다. 하지만 기존의 학습 DB 구축 방법은 사람이 건설현장을 직접 방문하여 카메라를 설치하고 각각의 목적에 알맞은 영상을 수집하여 DB를 직접 구축하고 있기 때문에 이에 많은 비용과 시간이 요구된다. 뿐만 아니라 이 같은 사람 의존적인 방식은 건설현장의 다양한 특성을 모두 반영한 DB를 구축하는 것에 한계가 있다. 이러한 한계를 극복하기 위해서 본 연구는 웹 크롤링(Web Crawling) 기법을 활용하여 건설현장 영상분석을 위한 학습 이미지 DB를 자동으로 구축하는 프레임워크를 제안한다. 프레임워크 검증을 위해 건설공종과 건설장비에 대한 학습 DB를 구축하여 영상분석모델을 학습 및 평가하는 실험을 진행하였다. 그 결과, 건설현장 모니터링을 위한 학습용 이미지 DB를 자동으로 구축할 수 있었을 뿐만 아니라 이를 토대로 개발한 영상분석모델이 건설공종과 건설장비를 성공적으로 분류하는 것을 확인하였다. 결과적으로 기존의 방식보다 학습 DB를 구축하는 데 필요한 시간과 비용을 최소화할 수 있었다.

Keywords

References

  1. Ahuja, M. S., Singh, J. and Varnica. B. (2014). "Web crawler: Extracting the web data." International Journal of Computer Trends and Technology, Vol. 13, No. 3, pp. 132-137. https://doi.org/10.14445/22312803/IJCTT-V13P128
  2. Arabi, S., Haghighat, A. and Sharma, A. (2019). A deep learning based solution for construction equipment detection: from development to deployment. arXiv preprint arXiv:1904.09021.
  3. Cai, J., Zhang, Y. and Cai, H. (2019). "Two-step long short-term memory method for identifying construction activities through positional and attentional cues." Automation in Construction, Vol. 106, p. 102886. https://doi.org/10.1016/j.autcon.2019.102886
  4. Chi, S. H. and Caldas, C. H. (2011). "Image-Based safety assessment: Automated spatial safety risk identification of earthmoving and surface mining activities." Journal of Construction Engineering and Management, Vol. 138, No. 3, pp. 341-351. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000438
  5. Chi, S. H., Caldas, C. H. and Kim, D. Y. (2009). "A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques." Computer-Aided Civil and Infrastructure Engineering, Vol. 24, No. 3, pp. 199-211. https://doi.org/10.1111/j.1467-8667.2008.00580.x
  6. Fard, M. G., Heydarian, A. and Niebles, J. C. (2013). "Vision- based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers." Advanced Engineering Informatics, Vol. 27, No. 4, pp. 652-663. https://doi.org/10.1016/j.aei.2013.09.001
  7. Gong, J. and Caldas, C. H. (2010). "Computer vision-based video interpretation model for automated productivity analysis of construction operations." Journal of Computing in Civil Engineering, Vol. 24, No. 3, pp. 252-263. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000027
  8. Kim, J. W., Chi, S. H. and Seo, J. W. (2018). "Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks." Automation in Construction, Vol. 87, pp. 297-308. https://doi.org/10.1016/j.autcon.2017.12.016
  9. Li, H., Lu, M., Hsu, S. C., Gray, M. and Huang, T. (2015). "Proactive behavior-based safety management for construction safety improvement." Safety Science, Vol. 75, pp. 107-117. https://doi.org/10.1016/j.ssci.2015.01.013
  10. Luo, X., Li, H., Yang, X., Yu, Y. and Cao, D. (2018). "Capturing and understanding workers' activities in far-field surveillance videos with deep action recognition and bayesian nonparametric learning." Computer-Aided Civil and Infrastructure Engineering, Vol. 34, pp. 333-351.
  11. Rezazadeh Azar, E. and McCabe, B. (2011). "Automated visual recognition of dump trucks in construction videos." Journal of Computing in Civil Engineering, Vol. 26, No. 6, pp. 769-781. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000179
  12. Seo, J. O., Han, S. V., Lee, S. H. and Kim, H. K. (2015). "Computer vision techniques for construction safety and health monitoring." Advanced Engineering Informatics, Vol. 29, No. 2, pp. 239-251. https://doi.org/10.1016/j.aei.2015.02.001
  13. Yang, J., Vela, P., Teizer, J. and Shi, Z. (2012). "Vision-Based tower crane tracking for understanding construction activity." Journal of Computing in Civil Engineering, Vol. 28, No. 1, pp. 103-112. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000242