DOI QR코드

DOI QR Code

불확실성하의 해양석유생산 최적화를 위한 추계적 모형

A Stochastic Model for Optimizing Offshore Oil Production Under Uncertainty

  • 구지혜 (부산세관 조사국 조사관실) ;
  • 김시화 (한국해양대학교 해사수송과학부)
  • Ku, Ji-Hye (Department of Investigations, Busan Main Customs) ;
  • Kim, Si-Hwa (Division of Maritime Transportation Science, National Korea Maritime and Ocean University)
  • 투고 : 2019.10.16
  • 심사 : 2019.12.10
  • 발행 : 2019.12.31

초록

해양석유 생산은 예기치 못한 유가 하락과 글로벌 석유물류의 변화로 인한 여러 가지 어려움에 직면하고 있다. 이 연구는 불확실성하의 해양석유생산 최적화를 위한 추계적 모형을 제시한다. 제시된 추계적 모형은 강인한 최적화 모형과 리코스 제한 최적화 모형을 사용하고 리코스 이익 변동의 척도로 하위부분평균을 사용한다. 제안된 모형을 바탕으로 불확실성 하의 원유의 가격과 수요에 관한 시나리오 기반의 자료를 사용하여 수행한 계산실험 및 결과를 검토하여 보고하였다. 이 연구는 불학실성 하에서 위험을 고려한 해양석유생산 문제에 대한 의사결정에 유의하게 적용될 수 있을 것이다.

Offshore oil production faces several difficulties caused by oil price decline and unexpected changes in the global petroleum logistics. This paper suggests a stochastic model for optimizing the offshore oil production under uncertainty. The proposed model incorporates robust optimization and restricted recourse framework, and uses the lower partial mean as the measure of variability of the recourse profit. Some computational experiments and results based on the proposed model using scenario-based data on the crude oil price and demand under uncertainty are examined and presented. This study would be meaningful in decision-making for the offshore oil production problem considering risks under uncertainty.

키워드

참고문헌

  1. Dantzig, G. B. (1955), "Linear programming under uncertainty", Management Science 1, pp. 197-206. https://doi.org/10.1287/mnsc.1.3-4.197
  2. Beale, E. M. L.(1955), "On minimizing a convex function subject to linear inequalities", Journal of the Royal Statistical Society B 17, pp. 173-184.
  3. Birge, John. R.(1982). "The value of the stochastic solution in stochastic linear programs with fixed recourse", Mathematical Programming 24 314-325. https://doi.org/10.1007/BF01585113
  4. Mulvey, J. M., Vanderbei, R. J. V. and Zenios, S. A. (1995). "Robust optimization of large-scale systems", Operation Research 43(2), pp. 264-281. https://doi.org/10.1287/opre.43.2.264
  5. Mulvey, J. M. and Ruszczynski, A.(1995). "A new scenario decomposition method for large-scale stochastic optimization", Operation Research 43(3) 477-490. https://doi.org/10.1287/opre.43.3.477
  6. Vladimirou, H. and Zenios, S. A. (1997). "A stochastic linear programs with restricted recourse", Eur.J.Opre.Res. pp. 101-177.
  7. Nikolaos V. Sahinidis(1998). "Robust process planning under uncertainty", Ind. Eng. Chem. Res. 37, pp. 1883-1892. https://doi.org/10.1021/ie970694t
  8. Yu, C. S. and Li, H. L.(2000). "A robust optimization model for stochastic logistic problems", Int. J. Production Economics 64, pp. 385-397. https://doi.org/10.1016/S0925-5273(99)00074-2
  9. Richard J. Barnes, Antonis Kokossis(2007). "A mathematical programming approach to the analysis, design and scheduling of offshore oilfields". 17th European Symposium on Computer Aided Process Engineering-ESCAPE17.
  10. Richard J. Barnes, Antonis Kokossis and Zhigang Shang, (2007). "An integrated mathematical programming approach for the design and optimisation of offshore fields". Computers and Chemical Engineering, 31, pp. 612-629. https://doi.org/10.1016/j.compchemeng.2006.09.006
  11. Gabriela P. Ribas, Silvio Hamacher and Alexandre Street(2010). "Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming", Intl. Trans. in Op. Res. 17, pp. 777-796 . https://doi.org/10.1111/j.1475-3995.2009.00756.x
  12. Mark J. Kaiser, Brian Snyder(2013). "The five offshore drilling rig markets", Marine Policy 39, pp. 201-214. https://doi.org/10.1016/j.marpol.2012.10.019
  13. Kim, C. S, and Kim, S. H.(2015), "A Study on Optimization Problem for Offshore Oil Production and Transportation" Journal of Navigation and Port Research Vol. 39, No. 4, pp. 353-360. https://doi.org/10.5394/KINPR.2015.39.4.353
  14. Ku, J. H. and Kim, S. H.(2015), "A Study on Oil Price Fluctuation and Offshore Oil Production Outlook", in 2015 Conference KINPR Proceedings, pp. 253-255.