References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.
- Ajdukiewicz, A. and Kliszczewicz, A. (2002), "Influence of recycled aggregates on mechanical properties of HS/HPC", Cement Concrete Compos., 24(2), 269-279. https://doi.org/10.1016/S0958-9465(01)00012-9.
- Batayneh, M., Marie, I. and Asi, I. (2007), "Use of selected waste materials in concrete mixes", Waste Manage., 27(12), 1870-1876. https://doi.org/10.1016/j.wasman.2006.07.026.
- Correia, S.L., Souza, F.L., Dienstmann, G. and Segadaes, A.M. (2009), "Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments", Waste Manage., 29(11), 2886-2891. https://doi.org/10.1016/j.wasman.2009.06.014.
- De Oliveira, M.B. and Vazquez, E. (1996), "The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete", Waste Manage., 16(1), 113-117. https://doi.org/10.1016/S0956-053X(96)00033-5.
- Duan, Z.H. and Poon, C.S. (2014), "Factors affecting the properties of recycled concrete by using neural networks", Comput. Concrete, 14(5), 547-561. http://dx.doi.org/10.12989/cac.2014.14.5.547.
- He, Z.J., Liu, G.W., Cao, W.L., Zhou, C.Y. and Jia-Xing, Z. (2015), "Strength criterion of plain recycled aggregate concrete under biaxial compression", Comput. Concrete, 16(2), 209-222. https://doi.org/10.12989/cac.2015.16.2.209.
-
Hosseini, P., Booshehrian, A. and Madari, A. (2011), "Developing concrete recycling strategies by utilization of nano-
$SiO_2$ particles", Waste Biomass Valoriz., 2(3), 347-355. http://dx.doi.org/10.1007/s12649-011-9071-9. - IS: 10262 (2009), Indian Standard Concrete Mix Proportioning-Guidelines, Bureau of Indian Standards, New Delhi.
- IS: 1331 (1992), Indian Standard Non-destructive Testing of Concrete-Method of Test: Part 2 Rebound Hammer, Bureau of Indian Standards, New Delhi.
- IS: 1331 (1992), Indian Standard Non-destructive Testing of Concrete-Method of Test: Part 1 Ultrasonic Pulse Velocity, Bureau of Indian Standards, New Delhi.
- IS: 383 (1970), Indian Standard Specification for Coarse and Fine Aggregate from Natural Sources, Bureau of Indian Standards, New Delhi.
- IS: 516 (1959), Indian Standard Methods of Tests for Strength Concrete, Bureau of Indian Standards, New Delhi. (Reaffirmed in 1999)
- IS: 5816 (1999), Indian Standard Splitting Tensile Strength of Concrete-method of Test, Bureau of Indian Standards, New Delhi.
- IS: 8112 (1989), Indian Standard Specification 43 Grade Ordinary Portland Cement Specification, Bureau of Indian Standards, New Delhi.
- Levy, S.M. and Helene, P. (2004), "Durability of recycled aggregates concrete: a safe way to sustainable development", Cement Concrete Res., 34(11), 1975-1980. https://doi.org/10.1016/j.cemconres.2004.02.009.
- Li, J., Xiao, H. and Zhou, Y. (2009), "Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete", Constr. Build. Mater., 23(3), 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019.
- Liang, J.F., Yang, Z.P., Yi, P.H. and Wang, J.B. (2017), "Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures", Comput. Concrete, 19(6), 609-615. https://doi.org/10.12989/cac.2017.19.6.609.
- Lopez-Gayarre, F., Serna, P., Domingo-Cabo, A., Serrano-Lopez, M.A. and Lopez-Colina, C. (2009), "Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties", Waste Manage., 29(12), 3022-3028. https://doi.org/10.1016/j.wasman.2009.07.010.
- Montgomery D.C. (2013), Design and Analysis of Experiments, Wiley India Pvt. Ltd., New Delhi, India.
- Moura, W.A., Goncalves, J.P. and Lima, M.B.L. (2007), "Copper slag waste as a supplementary cementing material to concrete", J. Mater. Sci., 42(7), 2226-2230. https://doi.org/10.1007/s10853-006-0997-4.
- Mukharjee, B.B. and Barai S.V. (2014a), "Characteristics of Mortars containing colloidal Nano-silica", Int. J. Appl. Eng. Res., 9(1), 17-22.
- Mukharjee, B.B. and Barai, S.V. (2014b), "Assessment of the influence of nano-silica on behavior of mortar using factorial design of experiments", Constr. Build. Mater., 68, 29-37. https://doi.org/10.1016/j.conbuildmat.2014.06.074.
- Mukharjee, B.B. and Barai, S.V. (2014c), "Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete", Constr. Build. Mater., 71, 570-578. https://doi.org/10.1016/j.conbuildmat.2014.08.040.
- Mukharjee, B.B. and Barai, S.V. (2014d), "Influence of nano-silica on the properties of recycled aggregate concrete", Constr. Build. Mater., 55, 29-37. https://doi.org/10.1016/j.conbuildmat.2014.01.003.
- Mukharjee, B.B. and Barai, S.V. (2015a), "Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica", Adv. Conc. Constr., 3(3), 187-202. http://dx.doi.org/10.12989/acc.2015.3.3.187.
- Mukharjee, B.B. and Barai, S.V. (2015b), "Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste", Waste Manage. Res., 33(6), 515-523. https://doi.org/10.1177/0734242X15584840.
- Nixon, P.J. (1978), "Recycled concrete as an aggregate for concrete-a review", Mater. Struct., 11(65), 371-378. http://dx.doi.org/10.1007/BF02473878.
- Pacheco-Torgal, F., Miraldo, S., Din, Y. and Labrincha, J.A. (2013), "Targeting HPC with the help of nanoparticles: An overview", Constr. Build. Mater., 38, 365-370. https://doi.org/10.1016/j.conbuildmat.2012.08.013.
- Park, W.J., Noguchi, T. and Lee, H.S. (2013), "Genetic algorithm in mix proportion design of recycled aggregate concrete", Comput. Concrete, 11(3), 183-199. https://doi.org/10.12989/cac.2013.11.3.183.
- Prusty, R., Mukharjee, B.B. and Barai, S.V. (2015), "Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach", Adv. Conc. Constr., 3(4), 253-268. http://dx.doi.org/10.12989/acc.2015.3.4.253.
- Rakshvir, M. and Barai, S.V. (2006), "Studies on recycled aggregates-based concrete", Waste Manage. Res., 24(3), 225-233. https://doi.org/10.1177/0734242X06064820.
- Rao, M.C., Bhattacharyya, S.K. and Barai, S.V. (2011), "Influence of field recycled coarse aggregate on properties of concrete", Mater. Struct., 44(1), 205-220. https://doi.org/10.1617/s11527-010-9620-x.
- Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.
- Saravanakumar, P. and Dhinakaran, G. (2013), "Durability characteristics of recycled aggregate concrete", Struct. Eng. Mech., 47(5), 701-711. https://doi.org/10.12989/sem.2013.47.5.701.
- Shah, A., Jan, I.U., Khan, R.U. and Qazi, E.U. (2013), "Experimental investigation on the use of recycled aggregates in producing concrete", Struct. Eng. Mech., 47(4), 545-557. https://doi.org/10.12989/sem.2013.47.4.545.
- Spaeth, V. and Tegguer, A.D. (2013), "Improvement of recycled concrete aggregate properties by polymer treatments", Int. J. Sust. Built Environ., 2(2), 143-152. https://doi.org/10.1016/j.ijsbe.2014.03.003.
- Taha, R., Al-Nuaimi, N., Kilayli, A. and Salem, A.B. (2014), "Use of local discarded materials in concrete", Int. J. Sust. Built. Environ., 3(1), 35-46. https://doi.org/10.1016/j.ijsbe.2014.04.005.
- Tam, V.W.Y. and Tam, C.M. (2008), "Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc", Constr. Build. Mater., 22(10), 2068-2077. https://doi.org/10.1016/j.conbuildmat.2007.07.024.
- Trankler, J., Walker, I. and Dohman, M. (1996), "Environmental impact of demolition waste-an overview on 10 years of research and experience", Waste Manage., 16(1-3), 21-26. https://doi.org/10.1016/S0956-053X(96)00061-X.
Cited by
- Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.559