DOI QR코드

DOI QR Code

Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory

  • Balubaid, Mohammed (Department of Industrial Engineering, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Dakhel, B. (Faculty of Applied Studies, GRC Department, King Abdulaziz University) ;
  • Mahmoud, S.R. (Faculty of Applied Studies, GRC Department, King Abdulaziz University)
  • Received : 2019.09.23
  • Accepted : 2019.12.20
  • Published : 2019.12.25

Abstract

In this research paper, the free vibrational behavior of the simply supported FG nano-plate is studied using the nonlocal two variables integral refined plate theory. The present model takes into account the small scale effect. The effective's properties of the plate change according to the power law variation (P-FGM). The equations of motion of the system are determined and resolved via Hamilton's principle and Navier procedure, respectively. The validity and efficiency of the current model are confirmed by comparing the results with those given in the literature. At the last section, several numerical results are presented to show the various parameters influencing the vibrational behavior such as the small-scale effect, geometry ratio, material index and aspect ratio.

Keywords

Acknowledgement

Supported by : King Abdulaziz University

References

  1. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  3. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  4. Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Physica E: Low-Dimens. Syst. Nanostr., 84, 84-97. https://doi.org/10.1016/j.physe.2016.05.036.
  5. Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B: Condens. Matter., 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025
  6. Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-magnetomechanical bending behavior of size-dependent sandwich piezomagneticnanoplates", Mech. Res. Commun., 84, 27-42. https://doi.org/10.1016/j.mechrescom.2017.06.002.
  7. Askari, H., Jamshidifar, H. and Fidan, B. (2017), "High resolution mass identification using nonlinear vibrations of nanoplates", Measure., 101, 166-174. https://doi.org/10.1016/j.measurement.2017.01.012.
  8. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  9. Banh-Thien, T., Dang-Trung, H., Le-Anh, L., Ho-Huu, V. and Nguyen-Thoi, T. (2017), "Buckling analysis of non-uniform thickness nanoplates in an elastic medium using the isogeometric analysis", Compos. Struct., 162, 182-193. https://doi.org/10.1016/j.compstruct.2016.11.092.
  10. Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.
  11. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  13. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  14. Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  15. Berghouti, H., Adda Bedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  16. Bochkarev, A. (2017), "Influence of boundary conditions on stiffness properties of a rectangular nanoplate", Procedia Struct. Integ., 6, 174-181. https://doi.org/10.1016/j.prostr.2017.11.027.
  17. Chen, T., Ye, Y. and Li, Y. (2018), "Investigations on structural intensity in nanoplates with thermal load", Physica E: Low-Dimens. Syst. Nanostr., 103, 1-9. https://doi.org/10.1016/j.physe.2018.05.012.
  18. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  19. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 25(7), 611-621. https://doi.org/10.1080/15376494.2017.1285464.
  20. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
  21. Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.
  22. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  23. Farrokhabadi, A. and Tavakolian, F. (2017), "Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces", Appl. Math. Model., 50, 604-620. https://doi.org/10.1016/j.apm.2017.06.017.
  24. Ghadiri, M., Shafiei, N. and Alavi, H. (2017), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  25. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  26. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
  27. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  28. Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
  29. Karlicic, D., Cajic, M., Adhikari, S., Kozic, P. and Murmu, T. (2017), "Vibrating nonlocal multi-nanoplate system under inplane magnetic field", Eur. J. Mech.-A/Solid., 64, 29-45. https://doi.org/10.1016/j.euromechsol.2017.01.013.
  30. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  31. Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2016), "Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates", Theo. Appl. Mech. Lett., 6(6), 253-267. https://doi.org/10.1016/j.taml.2016.10.003.
  32. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  33. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.181.
  34. Mohseni, E., Saidi, A.R. and Mohammadi, M. (2018), "Vibration analysis of thick functionally graded micro-plates using HOSNDPT and modified couple stress theory", Iran. J. Sci. Technol. Tran. Mech. Eng., 43(1), 641-665. https://doi.org/10.1007/s40997-018-0185-6
  35. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012) "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  36. Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlat. Microstr., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.
  37. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  38. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  39. Satish, N., Narendar, S. and Brahma Raju, K. (2017), "Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates", Compos. Struct., 180, 568-580. https://doi.org/10.1016/j.compstruct.2017.08.028.
  40. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  41. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
  42. Sobhy, M. and Alotebi, M.S. (2018), "Transient hygrothermal analysis of FG sandwich plates lying on a visco-pasternak foundation via a simple and accurate plate theory", Arab. J. Sci. Eng., 43(10), 5423-5437. https://doi.org/10.1007/s13369-018-3142-1.
  43. Yang, W.D., Yang, F.P. and Wang, X. (2017), "Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect", Int. J. Mech. Sci., 126, 12-23. https://doi.org/10.1016/j.ijmecsci.2017.03.018.
  44. Zargaripoor, A., Daneshmehr, A., Hosseini, I.I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Comput. Appl. Mech., 49(1), 86-101. https://doi.org/10.22059/JCAMECH.2018.248906.223.
  45. Zhang, L., Guo, J. and Xing, Y. (2018), "Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect", Int. J. Solid. Struct., 132-133, 278-302. https://doi.org/10.1016/j.ijsolstr.2017.10.020.
  46. Ziaee, S. (2018), "Linear free vibration of micro-/nano-plates with cut-out in thermal environment via modified couple stress theory and Ritz method", Ain Shams Eng. J., 9(4), 2373-2381. https://doi.org/10.1016/j.asej.2017.05.003.

Cited by

  1. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.001
  2. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
  3. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  4. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  5. Analysis of orthotropic plates by the two-dimensional generalized FIT method vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.421
  6. A Levy solution for bending, buckling, and vibration of Mindlin micro plates with a modified couple stress theory vol.2, pp.12, 2019, https://doi.org/10.1007/s42452-020-03939-w
  7. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  8. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  9. Geometrical Influences on the Vibration of Layered Plates vol.2021, 2019, https://doi.org/10.1155/2021/8843358
  10. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2019, https://doi.org/10.1155/2021/9983024
  11. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
  12. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.025
  13. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  14. Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator vol.77, pp.2, 2021, https://doi.org/10.12989/sem.2021.77.2.167
  15. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  16. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.175
  17. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  18. Vibration behavior of bi-dimensional functionally graded beams vol.77, pp.5, 2019, https://doi.org/10.12989/sem.2021.77.5.587
  19. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
  20. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  21. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.055
  22. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157