Acknowledgement
Supported by : King Abdulaziz University
References
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
- Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Physica E: Low-Dimens. Syst. Nanostr., 84, 84-97. https://doi.org/10.1016/j.physe.2016.05.036.
- Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B: Condens. Matter., 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025
- Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-magnetomechanical bending behavior of size-dependent sandwich piezomagneticnanoplates", Mech. Res. Commun., 84, 27-42. https://doi.org/10.1016/j.mechrescom.2017.06.002.
- Askari, H., Jamshidifar, H. and Fidan, B. (2017), "High resolution mass identification using nonlinear vibrations of nanoplates", Measure., 101, 166-174. https://doi.org/10.1016/j.measurement.2017.01.012.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Banh-Thien, T., Dang-Trung, H., Le-Anh, L., Ho-Huu, V. and Nguyen-Thoi, T. (2017), "Buckling analysis of non-uniform thickness nanoplates in an elastic medium using the isogeometric analysis", Compos. Struct., 162, 182-193. https://doi.org/10.1016/j.compstruct.2016.11.092.
- Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
- Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
- Berghouti, H., Adda Bedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Bochkarev, A. (2017), "Influence of boundary conditions on stiffness properties of a rectangular nanoplate", Procedia Struct. Integ., 6, 174-181. https://doi.org/10.1016/j.prostr.2017.11.027.
- Chen, T., Ye, Y. and Li, Y. (2018), "Investigations on structural intensity in nanoplates with thermal load", Physica E: Low-Dimens. Syst. Nanostr., 103, 1-9. https://doi.org/10.1016/j.physe.2018.05.012.
- Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 25(7), 611-621. https://doi.org/10.1080/15376494.2017.1285464.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
- Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Farrokhabadi, A. and Tavakolian, F. (2017), "Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces", Appl. Math. Model., 50, 604-620. https://doi.org/10.1016/j.apm.2017.06.017.
- Ghadiri, M., Shafiei, N. and Alavi, H. (2017), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
- Karlicic, D., Cajic, M., Adhikari, S., Kozic, P. and Murmu, T. (2017), "Vibrating nonlocal multi-nanoplate system under inplane magnetic field", Eur. J. Mech.-A/Solid., 64, 29-45. https://doi.org/10.1016/j.euromechsol.2017.01.013.
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
- Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2016), "Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates", Theo. Appl. Mech. Lett., 6(6), 253-267. https://doi.org/10.1016/j.taml.2016.10.003.
- Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.181.
- Mohseni, E., Saidi, A.R. and Mohammadi, M. (2018), "Vibration analysis of thick functionally graded micro-plates using HOSNDPT and modified couple stress theory", Iran. J. Sci. Technol. Tran. Mech. Eng., 43(1), 641-665. https://doi.org/10.1007/s40997-018-0185-6
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012) "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlat. Microstr., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.
- Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Satish, N., Narendar, S. and Brahma Raju, K. (2017), "Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates", Compos. Struct., 180, 568-580. https://doi.org/10.1016/j.compstruct.2017.08.028.
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
- Sobhy, M. and Alotebi, M.S. (2018), "Transient hygrothermal analysis of FG sandwich plates lying on a visco-pasternak foundation via a simple and accurate plate theory", Arab. J. Sci. Eng., 43(10), 5423-5437. https://doi.org/10.1007/s13369-018-3142-1.
- Yang, W.D., Yang, F.P. and Wang, X. (2017), "Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect", Int. J. Mech. Sci., 126, 12-23. https://doi.org/10.1016/j.ijmecsci.2017.03.018.
- Zargaripoor, A., Daneshmehr, A., Hosseini, I.I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Comput. Appl. Mech., 49(1), 86-101. https://doi.org/10.22059/JCAMECH.2018.248906.223.
- Zhang, L., Guo, J. and Xing, Y. (2018), "Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect", Int. J. Solid. Struct., 132-133, 278-302. https://doi.org/10.1016/j.ijsolstr.2017.10.020.
- Ziaee, S. (2018), "Linear free vibration of micro-/nano-plates with cut-out in thermal environment via modified couple stress theory and Ritz method", Ain Shams Eng. J., 9(4), 2373-2381. https://doi.org/10.1016/j.asej.2017.05.003.
Cited by
- Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.001
- Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
- Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
- Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
- Analysis of orthotropic plates by the two-dimensional generalized FIT method vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.421
- A Levy solution for bending, buckling, and vibration of Mindlin micro plates with a modified couple stress theory vol.2, pp.12, 2019, https://doi.org/10.1007/s42452-020-03939-w
- Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
- Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
- Geometrical Influences on the Vibration of Layered Plates vol.2021, 2019, https://doi.org/10.1155/2021/8843358
- Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2019, https://doi.org/10.1155/2021/9983024
- Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
- Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.025
- Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
- Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator vol.77, pp.2, 2021, https://doi.org/10.12989/sem.2021.77.2.167
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
- Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.175
- Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
- Vibration behavior of bi-dimensional functionally graded beams vol.77, pp.5, 2019, https://doi.org/10.12989/sem.2021.77.5.587
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
- Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
- Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.055
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157