Acknowledgement
Supported by : Australian Research Council
References
- Altarazi, S., Ammouri, M. and Hijazi, A. (2018), "Artificial neural network modeling to evaluate polyvinylchloride composites' properties", Comput. Mater. Sci., 153, 1-9. https://doi.org/10.1016/j.commatsci.2018.06.003.
- AS-1141.60.1 (2014), Methods for Sampling and Testing Aggregates Part 60.1: Alkali Aggregate Reactivity-Accelerated Mortar Bar Method, Sydney, Australia.
- AS-1141.60.2 (2014), Methods for Sampling and Testing Aggregates Part 60.2: Alkali Aggregate Reactivity-Concrete Prism Method, Sydney, Australia.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Compu. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Bal, L. and Buyle-Bodin, F. (2013), "Artificial neural network for predicting drying shrinkage of concrete", Constr. Build. Mater., 38, 248-254. https://doi.org/10.1016/j.conbuildmat.2012.08.043.
- Blight, G.E. and Alexander, M.G. (2011), Alkali-aggregate Reaction and Structural Damage to Concrete: Engineering Assessment, Repair and Management, CRC Press.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T. D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Burden, F. and Winkler, D. (2008), Bayesian Regularization of Neural Networks, Artificial Neural Networks, Springer.
- Dimopoulos, Y., Bourret, P. and Lek, S. (1995), "Use of some sensitivity criteria for choosing networks with good generalization ability", Neur. Proc. Lett., 2(6), 1-4. https://doi.org/10.1007/BF02309007.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete", Constr. Build. Mater., 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064.
- Esposito, R., Anac, C., Hendriks, M. A. and Copuroglu, O. (2016), "Influence of the alkali-silica reaction on the mechanical degradation of concrete", J. Mater. Civil Eng., 28(6), 04016007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001486.
- Eurocode 2 (2004), Design of Concrete Structures. Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels, Belgium.
- Ferche, A.C., Panesar, D.K., Sheikh, S.A. and Vecchio, F.J. (2017), "Toward Macro-Modeling of Alkali-Silica Reaction-Affected Structures", ACI Struct. J., 114(5), 1121. https://doi.org/10.14359/51700778
- Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian learning", Proceedings of the 1997 International Joint Conference on Neural Networks, Piscataway, IEEE.
- Gandomi, A.H., Alavi, A.H., Shadmehri, D.M. and Sahab, M. (2013), "An empirical model for shear capacity of RC deep beams using genetic-simulated annealing", Arch. Civil Mech. Eng., 13(3), 354-369. https://doi.org/10.1016/j.acme.2013.02.007.
- Gao, X.X., Multon, S., Cyr, M. and Sellier, A. (2011), "Optimising an expansion test for the assessment of alkali-silica reaction in concrete structures", Mater. Struct., 44(9), 1641-1653. https://doi.org/10.1617/s11527-011-9724-y.
- Gautam, B.P. and Panesar, D.K. (2017), "The effect of elevated conditioning temperature on the ASR expansion, cracking and properties of reactive Spratt aggregate concrete", Constr. Build. Mater., 140, 310-320. https://doi.org/10.1016/j.conbuildmat.2017.02.104.
- Gautam, B.P., Panesar, D.K., Sheikh, S.A. and Vecchio, F.J. (2017), "Effect of coarse aggregate grading on the ASR expansion and damage of concrete", Cement Concrete Res., 95, 75-83. https://doi.org/10.1016/j.cemconres.2017.02.022.
- Gevrey, M., Dimopoulos, I. and Lek, S. (2003), "Review and comparison of methods to study the contribution of variables in artificial neural network models", Ecol. Model., 160(3), 249-264. https://doi.org/10.1016/S0304-3800(02)00257-0.
- Giaccio, G., Torrijos, M.C., Tobes, J.M., Batic, O.R. and Zerbino, R. (2009), "Development of alkali-silica reaction under compressive loading and its effects on concrete behavior", ACI Mater. J., 106(3), 223.
- Giaccio, G., Zerbino, R., Ponce, J. and Batic, O.R. (2008), "Mechanical behavior of concretes damaged by alkali-silica reaction", Cement Concrete Res., 38(7), 993-1004. https://doi.org/10.1016/j.cemconres.2008.02.009.
- Giannini, E.R. (2012), "Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation", Doctor of Philosophy, University of Texas at Austin.
- Hariri-Ardebili, M.A. and Saouma, V.E. (2018), "Sensitivity and uncertainty analysis of AAR affected reinforced concrete shear walls", Eng. Struct., 172, 334-345. https://doi.org/10.1016/j.engstruct.2018.05.115.
- Hariri-Ardebili, M.A., Saouma, V.E. and Merz, C. (2018), "Risk-informed condition assessment of a bridge with Alkali-Aggregate reaction", ACI Struct. J., 115(2), 475-487. https://doi.org/10.14359/51701106
- Heaton, J. (2008). Introduction to Neural Networks with Java, Heaton Research, Inc.
- Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.
- ISE (1992), Structural Effects of Alkali-Aggregate Reaction: Technical Guidance on the Appraisal of Existing Structures.
- Islam, M.S. and Ghafoori, N. (2018), "A new approach to evaluate alkali-silica reactivity using loss in concrete stiffness", Constr. Build. Mater., 167, 578-586. https://doi.org/10.1016/j.conbuildmat.2018.02.047.
- Kagimoto, H., Yasuda, Y. and Kawamura, M. (2014), "ASR expansion, expansive pressure and cracking in concrete prisms under various degrees of restraint", Cement Concrete Res., 59, 1-15. https://doi.org/10.1016/j.cemconres.2014.01.018.
- Kawabata, Y., Seignol, J.F., Martin, R.P. and Toutlemonde, F. (2017), "Macroscopic chemo-mechanical modeling of alkali-silica reaction of concrete under stresses", Constr. Build. Mater., 137, 234-245. https://doi.org/10.1016/j.conbuildmat.2017.01.090.
- Kim, J.K., Han, S.H. and Song, Y.C. (2002), "Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results", Cement Concrete Res., 32(7), 1087-1094. https://doi.org/10.1016/S0008-8846(02)00744-5.
- Kong, L., Chen, X. and Du, Y. (2016), "Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN", Comput. Concrete, 17(5), 613-628. https://doi.org/10.12989/cac.2016.17.5.613.
- Kubo, Y. and Nakata, M. (2012) "Effect of reactive aggregate on mechanical properties of concrete affected by Alkali-Silica reaction", Proceedings of the 14th International Conference on Alkali-Aggregate Reaction, Austin, Texas, USA.
- Larive, C. (1997), "Apports combines de l'experimentation et de la modelisation a la comprehension de l'alcali-reaction et de ses effets mecaniques", Ph.D., Ecole Nationale des Ponts et Chaussees, Paris.
- Lindgard, J. andic-Cakir, O., Fernandes, I., Ronning, T.F. and Thomas, M.D. (2012), "Alkali-silica reactions (ASR): literature review on parameters influencing laboratory performance testing", Cement Concrete Res., 42(2), 223-243. https://doi.org/10.1016/j.cemconres.2011.10.004.
- MacKay, D.J. (1992), "Bayesian interpolation", Neur. Comput., 4(3), 415-447. https://doi.org/10.1162/neco.1992.4.3.415.
- Martin, R.P., Sanchez, L., Fournier, B. and Toutlemonde, F. (2017), "Evaluation of different techniques for the diagnosis & prognosis of Internal Swelling Reaction (ISR) mechanisms in concrete", Constr. Build. Mater., 156, 956-964. https://doi.org/10.1016/j.conbuildmat.2017.09.047.
- Moallemi, S. and Pietruszczak, S. (2018), "Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR", Comput. Concrete, 22(1), 1-10. https://doi.org/10.12989/cac.2018.22.1.001.
- Mohammed, T.U., Hamada, H. and Yamaji, T. (2003), "Relation between strain on surface and strain over embedded steel bars in ASR affected concrete members", J. Adv. Concrete Technol., 1(1), 76-88. https://doi.org/10.3151/jact.1.76.
- Multon, S. (2003), "Evaluation experimentale et theorique des effets mecaniques de l'alcali-reaction sur des structures modeles", Ph.D., Universite de Marne-la-Vallee (in collaboration with LCPCEDF), Champs sur Marne.
- Nayira, S., Erdogdu, S. and Kurbetcib, S. (2017), "Effectiveness of mineral additives in mitigating alkali-silica reaction in mortar", Comput. Concrete, 20(6), 155-163. https://doi.org/10.12989/cac.2017.20.6.705.
- Olden, J.D. and Jackson, D.A. (2002), "Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks", Ecolog. Model., 154(1-2), 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9.
- Olden, J.D., Joy, M.K. and Death, R.G. (2004), "An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data", Ecolog. Model., 178(3-4), 389-397. https://doi.org/10.1016/j.ecolmodel.2004.03.013.
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19, 59-68. https://doi.org/10.12989/cac.2017.19.1.059.
- Ozesmi, S.L. and Ozesmi, U. (1999), "An artificial neural network approach to spatial habitat modelling with interspecific interaction", Ecolog. Model., 116(1), 15-31. https://doi.org/10.1016/S0304-3800(98)00149-5.
- Pleau, R., Berube, M., Pigeon, M., Fournier, B. and Raphael, S. (1989), "Mechanical behaviour of concrete affected by ASR", Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, 721-726.
- Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J.-M., Cognon, H. and Bourdarot, E. (2007), "Chemical modelling of alkali silica reaction: influence of the reactive aggregate size distribution", Mater. Struct., 40(2), 229. https://doi.org/10.1617/s11527-006-9139-3.
- Sanchez, L. (2014), "Contribution to the assessment of damage in aging concrete infrastructures affected by alkali-aggregate reaction", Doctor of Philosophy, Universite Laval.
- Sanchez, L., Fournier, B., Jolin, M. and Duchesne, J. (2015), "Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI)", Cement Concrete Res., 67, 74-92. https://doi.org/10.1016/j.cemconres.2014.08.002.
- Sanchez, L.F.M., Fournier, B., Jolin, M., Mitchell, D. and Bastien, J. (2017), "Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures", Cement Concrete Res., 93, 17-31. https://doi.org/10.1016/j.cemconres.2016.12.001.
- Saouma, V. and Perotti, L. (2006), "Constitutive model for alkali-aggregate reactions", ACI Mater. J., 103(3), 194-202.
- Sargolzahi, M., Kodjo, S.A., Rivard, P. and Rhazi, J. (2010), "Effectiveness of nondestructive testing for the evaluation of alkali-silica reaction in concrete", Constr. Build. Mater., 24(8), 1398-1403. https://doi.org/10.1016/j.conbuildmat.2010.01.018
- Seignol, J.F., Baghdadi, N. and Toutlemonde, F. (2009), "A macroscopic chemo-mechanical model aimed at re-assessment of delayed ettringite formation affected concrete structures", Proceedings of the first International Conference on Computational Technologies in Concrete Structures (CTCS'09), 422-440.
- Shayan, A. and Ivanusec, I. (1989), "Influence of NaOH on mechanical properties of cement paste and mortar with and without reactive aggregate", Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, 715-720.
- Sims, I. and Poole, A.B. (2017), Alkali-Aggregate Reaction in Concrete: A World Review, CRC Press.
- Sirivivatnanon, V., Mohammadi, J. and South, W. (2016), "Reliability of new Australian test methods in predicting alkali silica reaction of field concrete", Constr. Build. Mater., 126, 868-874. https://doi.org/10.1016/j.conbuildmat.2016.09.055.
- Smaoui, N., Berube, M., Fournier, B., Bissonnette, B. and Durand, B. (2005), "Effects of alkali addition on the mechanical properties and durability of concrete", Cement Concrete Res., 35(2), 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007.
- Smaoui, N., Bissonnette, B., Berube, M.A., Fournier, B. and Durand, B. (2005), "Mechanical properties of ASR-affected concrete containing fine or coarse reactive aggregates", J. ASTM Int., 3(3), 1-16. https://doi.org/10.1520/JAI12010.
- Sonebi, M., Grunewald, S., Cevik, A. and Walraven, J. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Concrete, 18(4), 903-920. https://doi.org/10.12989/cac.2016.18.4.903.
- Yu, Y., Li, W., Li, J. and Nguyen, T.N. (2018), "A novel optimised self-learning method for compressive strength prediction of high performance concrete", Constr. Build. Mater., 184, 229-247. https://doi.org/10.1016/j.conbuildmat.2018.06.219.
- Yu, Y., Li, Y. and Li J. (2015), "Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm", J. Intel. Mater. Syst. Struct., 26(14), 1789-1798. https://doi.org/10.1177/1045389X15577649.
- Yu, Y., Zhang, C., Gu, X. and Cui, Y. (2019), "Expansion prediction of alkali aggregate reactivity-affected concrete structures using a hybrid soft computing method", Neur. Comput. Appl., 31(12), 8641-8660. https://doi.org/10.1007/s00521-018-3679-7.
- Yuksel, C., Mardani-Aghabaglou, A., Beglarigale, A., Ramyar, K. and Andic-Cakir, O. (2016), "Influence of water/powder ratio and powder type on alkali-silica reactivity and transport properties of self-consolidating concrete", Mater. Struct., 49(1-2), 289-299. https://doi.org/10.1617/s11527-014-0497-y.
Cited by
- A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.397
- Pozzolanic properties of trachyte and rhyolite and their effects on alkali-silica reaction vol.11, pp.4, 2019, https://doi.org/10.12989/acc.2021.11.4.299