DOI QR코드

DOI QR Code

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Chikh, Abdelbaki (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Hebali, Habib (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2019.08.01
  • Accepted : 2019.10.11
  • Published : 2019.12.25

Abstract

The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.

Keywords

References

  1. Addou, F.Y., Meradjah, M., M.A.A, Bousahla, Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct., 45, 227-232. https://doi.org/10.1016/S0263-8223(99)00028-8.
  3. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  5. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  6. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  7. Bensattalah, T., Zidour, M., Hassaine Daouadji, T. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3) 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  8. Bogdanovich, A.E. and Pastore, C.M. (1996), Mechanics of Textile and Laminated Composites with Applications to Structural Analysis, Chapman & Hall, London.
  9. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093.
  10. Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A. A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x.
  11. Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9-11), 705-725. https://doi.org/10.1016/j.cma.2003.09.014.
  12. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  13. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069.
  14. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40,141. https://doi.org/10.1007/s40430-018-1065-0.
  15. Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.
  16. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  17. Ganapathi, M., Prakash, T. and Sundararajan, N. (2006), "Influence of functionally graded material on buckling of skew plates under mechanical loads", J. Eng. Mech., 132(8), 902-905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902).
  18. Ghugal, Y.M. and Kulkarni, S.K. (2011), "Thermal stress analysis of cross-ply laminated plates using refined shear deformation theory", J. Exp. Appl. Mech., 2, 47-66.
  19. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
  20. Hadji, L. and Zouatnia, N. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2),177-183. https://doi.org/10.12989/eas.2019.16.2.177.
  21. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  22. Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014.
  23. Hirwani, C.K., Biswash, S., Mehar, K. and Panda, S.K. (2018b), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", IOP Conf. Ser.: Mater. Sci. Eng., 338(1), 012019.
  24. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018a), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
  25. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  26. Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
  27. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  28. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.
  29. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  30. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40, 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  31. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng. L., 223, 53-62. https://doi.org/10.1243/14644207JMDA189.
  32. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  33. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mat. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  34. Lee, Y.Y., Zhao, X. and Reddy, J.N. (2010), "Postbuckling analysis of functionally graded plates subject to compressive and thermal loads", Comput. Meth. Appl. Mech. Eng., 199(25-28), 1645-1653. https://doi.org/10.1016/j.cma.2010.01.008.
  35. Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  36. Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stress., 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.
  37. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016a), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.
  38. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.
  39. Mantari, J.L. and Granados, E.V. (2015a), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B, 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
  40. Mantari, J.L. and Granados, E.V. (2015b), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
  41. Mantari, J.L. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 132, 952-959. https://doi.org/10.1016/j.compstruct.2015.06.035.
  42. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87, 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002.
  43. Mehar, K. and Panda, S.K. (2017a), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
  44. Mehar, K. and Panda, S.K. (2017b), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Comput. Meth., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
  45. Mehar, K. and Panda, S.K. (2017c), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
  46. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  47. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.179.
  48. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
  49. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  50. Mehar, K., Panda, S.K. and Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  51. Natanzi, A.J., Jafari, G.S. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.
  52. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  53. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  54. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3, 475-493. https://doi.org/10.1080/01495738008926984.
  55. Rohwer, K., Rolfes, R. and Sparr, H. (2001), "Higher-order theories for thermal stresses in layered plate", Int. J. Solid. Struct., 38, 3673-3687. https://doi.org/10.1016/S0020-7683(00)00249-3.
  56. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  57. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  58. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-220. https://doi.org/10.1007/BF01176650.
  59. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  60. Versino, D., Gherlone, M., Mattone, M., Sciuva, M.D. and Tessler, A. (2013), "$C_0$ triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates", Compos. B, 44, 218-230. https://doi.org/10.1016/j.compositesb.2012.05.026.
  61. Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005.
  62. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  63. Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading", Compos. Struct., 65(3-4), 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012.
  64. Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 198(33-36), 2796-2811. https://doi.org/10.1016/j.cma.2009.04.005.
  65. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319(3-5), 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.

Cited by

  1. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2019, https://doi.org/10.12989/gae.2020.21.1.001
  2. Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
  3. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
  4. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  5. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  6. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2019, https://doi.org/10.12989/sem.2020.76.3.413
  7. Analysis of orthotropic plates by the two-dimensional generalized FIT method vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.421
  8. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2019, https://doi.org/10.12989/mwt.2020.11.6.399
  9. Stressing State Analysis of Reinforcement Concrete Beams Strengthened with Carbon Fiber Reinforced Plastic vol.14, pp.1, 2019, https://doi.org/10.1186/s40069-020-00417-w
  10. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  11. Experimental and analytical study on continuous GFRP-concrete decks with steel bars vol.76, pp.6, 2019, https://doi.org/10.12989/sem.2020.76.6.737
  12. Effect of boundary conditions on thermal buckling of laminated composite shallow shell vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.501
  13. Geometrical Influences on the Vibration of Layered Plates vol.2021, 2019, https://doi.org/10.1155/2021/8843358
  14. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
  15. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  16. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.213
  17. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  18. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.151
  19. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.175
  20. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  21. An analytical solution for equations and the dynamical behavior of the orthotropic elastic material vol.11, pp.4, 2021, https://doi.org/10.12989/acc.2021.11.4.315
  22. A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2019, https://doi.org/10.1108/aeat-01-2021-0012
  23. A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2019, https://doi.org/10.12989/cme.2021.3.2.135
  24. Stress analysis of a pre-stretched orthotropic plate with finite dimensions vol.45, pp.2, 2021, https://doi.org/10.1139/tcsme-2019-0241
  25. Dynamic damage analysis of a ten-layer circular composite plate subjected to low-velocity impact vol.21, pp.3, 2019, https://doi.org/10.1007/s43452-021-00238-y
  26. Surface wave scattering analysis in an initially stressed stratified media vol.38, pp.8, 2019, https://doi.org/10.1108/ec-03-2020-0133
  27. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2019, https://doi.org/10.12989/amr.2021.10.3.169