References
- Anagnostou, G. and Kovari, K. (1996), "Face stability conditions with earth-pressure-balanced shields", Tunn. Undergr. Sp. Technol., 11(2), 165-173. https://doi.org/10.1016/0886-7798(96)00017-X
- Anagnostou, S.T.G. (2012), "The contribution of horizontal arching to tunnel face stability", Geotechnik, 35(1), 34-44. https://doi.org/10.1002/gete.201100024
- Anagnostou, G. and Perazzelli, P. (2013), "The stability of a tunnel face with a free span and a non-uniform support", Geotechnik, 36(1), 40-50. https://doi.org/10.1002/gete.201200014
- Broere, W. (2001), "Tunnel face stability & new CPT applications", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
- Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier, Amsterdam, The Netherlands.
- Chambon, P. and Corte, J.F. (1994), "Shallow tunnels in cohesionless soil: Stability of tunnel face", Geotech. Eng., 120(7), 1148-1165. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1148)
- Chen, R.P., Tang, L.J. and Ling, D.S. (2011), "Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method", Comput. Geotech., 38(2), 187-195. https://doi.org/10.1016/j.compgeo.2010.11.003
- Chen, R.P., Li, J. and Kong, L.G. (2013), "Experimental study on face instability of shield tunnel in sand", Tunn. Undergr. Sp. Technol. Incorp. Trenchless Technol. Res., 33(1), 12-21. https://doi.org/10.1016/j.tust.2012.08.001
- Chen, R.P., Tang, L.J., Yin, X.S., Chen, Y.M. and Bian, X.C. (2015), "An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils", Acta Geotech., 10(5), 683-692. https://doi.org/10.1007/s11440-014-0304-5
- Horn, N. (1961), "Horizontal earth pressure on the vertical surfaces of the tunnel tubes", Proceedings of the National Conference of the Hungarian Civil Engineering Industry, Budapest, Hungary, November.
- Han, K., Zhang, C. and Zhang, D. (2016), "Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesivefrictional soils", Comput. Geotech., 79, 1-9. https://doi.org/10.1016/j.compgeo.2016.05.018
- Idinger, G., Aklik, P. and Wu, W. (2011), "Centrifuge model test on the face stability of shallow tunnel", Acta Geotech., 6(2), 105-117. https://doi.org/10.1007/s11440-011-0139-2
- Ibrahim, E., Soubra, A.H. and Mollon, G. (2015), "Threedimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium", Tunn. Undergr. Sp. Technol., 49(1), 18-34. https://doi.org/10.1016/j.tust.2015.04.001
- Krause, T. (1987), "Schildvortrieb mit flussigkeits-und erdgestutzter ortsbrust", Technical University Carolo-Wilhelmina, Brunswick, Germany.
- Kirsch, A. (2010), "Experimental investigation of the face stability of shallow tunnels in sand", Acta Geotech., 5(1), 43-62. https://doi.org/10.1007/s11440-010-0110-7
- Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. https://doi.org/10.12989/gae.2016.11.4.471
- Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40(4), 581-606. https://doi.org/10.1680/geot.1990.40.4.581
- Li, C. and Zou, J.F. (2019), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on the spatially mobilized plane failure criterion", Int. J. Geomech., Accepted.
- Mollon, G., Dias, D. and Soubra, A.H. (2009), "Probabilistic Analysis and Design of Circular Tunnels against Face Stability", Int. J. Geomech., 9(6), 237-249. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(237)
- Mollon, G., Dias, D. and Soubra, A.H. (2010), "Face stability analysis of circular tunnels driven by a pressurized shield", J. Geotech. Geoenviron. Eng., 136(1), 215-229. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000194
- Mollon, G., Daniel, D. and Abdul-Hamid, S. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", Int. J. Numer. Anal. Meth. Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962
- Oreste, P.P. and Dias, D. (2012), "Stabilisation of the excavation face in shallow tunnels using fibreglass dowels", Rock Mech. Rock Eng., 45(4), 499-517. https://doi.org/10.1007/s00603-012-0234-1
- Pan, Q. and Dias, D. (2016a), "Face stability analysis for a shielddriven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach", Int. J. Geomech., 16(3), 04015076. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000569
- Pan, Q. and Dias, D. (2016b), "The effect of pore water pressure on tunnel face stability", Int. J. Numer. Anal. Meth. Geomech., 40(15), 2123-2136. https://doi.org/10.1002/nag.2528
- Pan, Q. and Dias, D. (2017a), "Upper-bound analysis on the face stability of a non-circular tunnel", Tunn. Undergr. Sp. Technol., 62, 96-102. https://doi.org/10.1016/j.tust.2016.11.010
- Pan, Q. and Dias, D. (2017b), "Safety factor assessment of a tunnel face reinforced by horizontal dowels", Eng. Struct., 142, 56-66. https://doi.org/10.1016/j.engstruct.2017.03.056
- Peng, X., Yu, P. and Zhang, Y. (2018), "Applying modified discontinuous deformation analysis to assess the dynamic response of sites containing discontinuities", Eng. Geol., 246, 349-360. https://doi.org/10.1016/j.enggeo.2018.10.011
- Soubra, A.H. (2000), "Kinematical approach to the face stability analysis of shallow circular tunnels", Proceedings of the 8th International Symposium on Plasticity, Vancouver, Canada, July.
- Schuller, H. and Schweiger, H.F. (2002), "Application of a multilaminate model to simulation of shear band formation in NATM-tunnelling", Comput. Geotech., 29(7), 501-524. https://doi.org/10.1016/S0266-352X(02)00013-7
- Subrin, D. and Wong, H. (2002), "Tunnel face stability in frictional material: A new 3D failure mechanism", Comptes Rendus Mecanique, 330(7), 513-519. https://doi.org/10.1016/S1631-0721(02)01491-2
- Senent, S. and Jimenez, R. (2015), "A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse", Tunn. Undergr. Sp. Technol., 47, 182-192. https://doi.org/10.1016/j.tust.2014.12.014
- Tang, X.W., Liu, W. and Albers, B. (2014), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotech., 9(4), 661-671. https://doi.org/10.1007/s11440-013-0256-1
- Vermeer, P.A., Ruse, N. and Marcher, T. (2002), "Tunnel heading stability in drained ground", Felsbau, 20(6), 8-18.
- Yang, X.L. and Yan, R.M. (2015), "Collapse mechanism for deep tunnel subjected to seepage force in layered soils", Geomech. Eng., 8(5), 741-756. https://doi.org/10.12989/gae.2015.8.5.741
- Yang, X.L., Xu, J.S. and Li, Y.X. (2016), "Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule", Geomech. Eng., 10(1), 21-35. https://doi.org/10.12989/gae.2016.10.1.021
- Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Technol., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007
- Zhao, L.H., Cheng, X., Li, D.J. and Zhang, Y.B. (2018), "Influence of non-dimensional strength parameters on seismic stability of cracked slopes", J. Mountain Sci.
- Zou, J.F., Qian, Z.H., Xiang, X. and Chen, G.H. (2019a), "Face stability of a tunnel excavated in saturated nonhomogeneous soils", Tunn. Undergr. Sp. Technol., 83, 1-17. https://doi.org/10.1016/j.tust.2018.09.007
- Zou, J.F., Chen, G.H. and Qian, Z.H. (2019b), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106, 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014
- Zou, J.F. and Zhang, P.H. (2019c), "Analytical model of fully grouted bolts in pull-out tests and in situ rock masses", Int. J. Rock Mech. Min. Sci., 113, 278-294. https://doi.org/10.1016/j.ijrmms.2018.11.015
- Zou, J.F., Liu, L. and Xia, M.Y. (2019d), "A new simple approach for the quasi-plane strain problem of circular tunnel in strainsoftening rock mass incorporating the effect of out-of-plane stress", Acta Geotech., In Press.
Cited by
- An Improved Stress and Strain Increment Approaches for Circular Tunnel in Strain-Softening Surrounding Rock Considering Seepage Force vol.2019, 2019, https://doi.org/10.1155/2019/2075240
- Assessment of the Stability of an Unlined Rectangular Tunnel with an Overload on the Ground Surface vol.2020, 2019, https://doi.org/10.1155/2020/6616067
- Probabilistic tunnel face stability analysis: A comparison between LEM and LAM vol.24, pp.4, 2021, https://doi.org/10.12989/gae.2021.24.4.399
- Performance of Tunnel Feet-Lock Pipe (TFP) in Sharing Vertical Foundation Load vol.25, pp.3, 2019, https://doi.org/10.1007/s12205-021-1017-6
- Cavity expansion in k0 consolidated clay vol.25, pp.10, 2021, https://doi.org/10.1080/19648189.2019.1605937
- Stability analysis of rock slopes using strength reduction adaptive finite element limit analysis vol.79, pp.4, 2019, https://doi.org/10.12989/sem.2021.79.4.487