DOI QR코드

DOI QR Code

A numerical analysis of the equivalent skeleton void ratio for silty sand

  • Dai, Bei-Bing (School of Civil Engineering, Sun Yat-sen University) ;
  • Yang, Jun (Department of Civil Engineering, The University of Hong Kong) ;
  • Gu, Xiao-Qiang (Department of Geotechnical Engineering & Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University) ;
  • Zhang, Wei (College of Water Conservancy and Civil Engineering, South China Agricultural University)
  • Received : 2018.10.02
  • Accepted : 2018.12.02
  • Published : 2019.01.20

Abstract

Recent research on the behavior of silty sand tends to advocate the use of equivalent skeleton void ratio to characterize the density state of this type of soil. This paper presents an investigation to explore the physical meaning of the equivalent skeleton void ratio by means of DEM simulations for assemblies of coarse and fine particles under biaxial shear. The simulations reveal that the distribution pattern of fine particles in the soil skeleton plays a crucial role in the overall macroscopic response: The contractive response observed at the macro scale is mainly caused by the movement of fine particles out of the force chains whereas the dilative response is mainly associated with the migration of fine particles into the force chains. In an assembly of coarse and fine particles, neither all of the fine particles nor all of the coarse ones participate in the force chains to carry the external loads, and therefore a more reasonable definition for equivalent skeleton void ratio is put forward in which a new parameter d is introduced to take into account the fraction of coarse particles absent from the force chains.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Tongji University

References

  1. Bobei, D.C., Lo, S.R., Wanatowski, D., Gnanendran, C.T. and Rahman, M.M. (2009), "Modified state parameter for characterizing static liquefaction of sand with fines", Can. Geotech. J., 46(3), 281-295. https://doi.org/10.1139/T08-122
  2. Bolton, M.D., Nakata, Y. and Cheng, Y.P. (2008), "Micro- and Macro-mechanical behavior of DEM crushable materials", Geotechnique, 58(6), 471-480. https://doi.org/10.1680/geot.2008.58.6.471
  3. Carraro, J.A.H., Bandini, P. and Salgado, R. (2003), "Liquefaction resistance of clean and non-plastic silty sands based on cone penetration resistance", J. Geotech. Geoenviron. Eng., 129(11), 965-976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
  4. Chang, C.S. and Yin, Z.Y. (2011), "Micromechanical modeling for behavior of silty sand with influence of fine content", Int. J. Solids Struct., 48(19), 2655-2667. https://doi.org/10.1016/j.ijsolstr.2011.05.014
  5. Chang, C.S., Meidani, M. and Deng, Y. (2017), "A comparison model for sand-silt mixtures based on the concept of active and inactive voids", Acta Geotech., 12(6), 1301-1317. https://doi.org/10.1007/s11440-017-0598-1
  6. Cundall, P.A. (1971), "A computer model for simulating progressive, large scale movements in blocky rock systems", Proceedings of the International Symposium on Rock Mechanics, Nancy, France, October.
  7. Dai, B.B. and Yang, J. (2017), "On shear strength of assemblies of frictionless particles", Int. J. Geomech., 17(11), 04017102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001005
  8. Dai, B.B., Yang, J. and Luo, X. (2015), "A numerical analysis of the shear behavior of granular soil with fines", Particuology, 21, 160-172. https://doi.org/10.1016/j.partic.2014.08.010
  9. Dai, B.B., Yang, J. and Zhou, C.Y. (2017), "Micromechanical origin of angle of repose in granular materials", Granul. Matter, 19(2), 24. https://doi.org/10.1007/s10035-017-0709-6
  10. Georgiannou, V.N., Burland, J.B. and Hight, H.W. (1990), "The undrained behavior of clayey sands in triaxial compression and extension", Geotechnique, 40(3), 431-449. https://doi.org/10.1680/geot.1990.40.3.431
  11. Gu, X.Q., Huang, M.S., and Qian, J.G. (2014), "DEM investigation on the evolution of microstructure in granular soils under shearing", Granul. Matter, 16(1), 91-106. https://doi.org/10.1007/s10035-013-0467-z
  12. Hsiao, D.H. and Phan, V.T.A. (2014), "Effects of silt contents on the static and dynamic properties of sand-silt mixtures", Geomech. Eng., 7(3), 297-316. https://doi.org/10.12989/gae.2014.7.3.297
  13. Hyodo, M., Wu, Y., Kajiyama, S., Nakata, Y. and Yoshimoto, N. (2017), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127
  14. Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351
  15. Itasca. (2005), User's Manual for PFC2D, Itasca Consulting Group, Inc.
  16. Kenney, T.C. (1977), "Residual strengths of mineral mixtures", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, July.
  17. Kuerbis, R.H., Negussey, D. and Vaid, Y.P. (1988), "Effect of gradation and fines content on the undrained response of sand", Geotech. Special Publ., 21, 330-345.
  18. Lade, P.V. and Yamamuro, J.A. (1997), "Effects of non-plastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052
  19. Lashkari, A. (2014), "Recommendations for extension and recalibration of an existing sand constitutive model taking into account varying non-plastic fines content", Soil Dyn. Earthq. Eng., 61, 212-238. https://doi.org/10.1016/j.soildyn.2014.02.012
  20. Ma, G., Chang, X.L., Zhou, W. and Ng, T.T. (2014), "Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study" Geomech. Eng., 7(3), 317-333. https://doi.org/10.12989/gae.2014.7.3.317
  21. Mitchell, J.K. (1976), Fundamentals of Soil Behaviors, Wiley, New York, U.S.A.
  22. Mohammadi, A. and Qadimi, A. (2015), "A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio", Acta Geotech., 10(5), 587-606. https://doi.org/10.1007/s11440-014-0318-z
  23. Monkul, M.M. (2013), "Influence of gradation on shear strength and volume change behavior of silty sands", Geomech. Eng., 5(5), 401-417. https://doi.org/10.12989/gae.2013.5.5.401
  24. Murthy, T.G., Loukidis, D., Carraro, J. A.H. and Salgado, R. (2007), "Undrained monotonic response of clean and silty sands", Geotechnique, 57(3), 273-288. https://doi.org/10.1680/geot.2007.57.3.273
  25. Ni, Q., Tan, T.S., Dasari, G.R. and Hight, D.W. (2004), "Contribution of fines to the compressive strength of mixed soils", Geotechnique, 54(9), 561-569. https://doi.org/10.1680/geot.2004.54.9.561
  26. Patil, U.D., Puppala, A.J., Hoyos, L.R. and Pedarla, A. (2017), "Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing", Eng. Geol., 231, 21-33. https://doi.org/10.1016/j.enggeo.2017.10.011
  27. Pitman, T.D., Robertson, P.K. and Sego, D.C. (1994), "Influence of fines on the collapse of loose sands", Can. Geotech. J., 31(5), 728-739. https://doi.org/10.1139/t94-084
  28. Polito, C.P. and Martin II, J.R. (2001), "Effects of non-plastic fines on the liquefaction resistance of sands", J. Geotech. Geoenviron. Eng., 127(5), 408-415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
  29. Porcino, D.D. and Diano, V. (2017), "The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures", Soil Dyn. Earthq. Eng., 101, 311-321. https://doi.org/10.1016/j.soildyn.2017.07.015
  30. Qian, J.G., You, Z., Huang, M.S. and Gu, X.Q. (2013), "A micromechanics-based model for estimating localized failure with effects of fabric anisotropy", Comput. Geotech., 50, 90-100. https://doi.org/10.1016/j.compgeo.2013.01.001
  31. Rahman, M., Lo, S. and Dafalias, Y. (2014), "Modelling the static liquefaction of sand with low-plasticity fines", Geotechnique, 64(11), 881-894. https://doi.org/10.1680/geot.14.P.079
  32. Rahman, M.M., Lo, S.R. and Gnanendran C.T. (2008), "On equivalent granular void ratio and steady state behavior of loose sand with fines", Can. Geotech. J., 45(10), 1439-1456. https://doi.org/10.1139/T08-064
  33. Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601
  34. Thevanayagam, S. and Mohan, S. (2000), "Intergranular state variables and stress-strain behaviour of silty sands", Geotechnique, 50(1), 1-23. https://doi.org/10.1680/geot.2000.50.1.1
  35. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands and sandy silts", J. Geotech. Geoenviron. Eng., 128(10), 849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  36. Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 47(2), 319-329. https://doi.org/10.1680/geot.1997.47.2.319
  37. Vahidi-Nia, F., Lashkari, A. and Binesh, S.M. (2015), "An insight into the mechanical behavior of binary granular soils", Particuology, 21, 82-89. https://doi.org/10.1016/j.partic.2014.11.006
  38. Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815
  39. Yamamuro, J.A. and Lade, P.V. (1997), "Static liquefaction of very loose sands", Can. Geotech. J., 34(6), 905-917. https://doi.org/10.1139/t97-057
  40. Yamamuro, J.A. and Lade, P.V. (1999), "Experiments and modelling of silty sands susceptible to static liquefaction", Mech. Cohes. Frict. Mater. Struct., 4(6), 545-564. https://doi.org/10.1002/(SICI)1099-1484(199911)4:6<545::AID-CFM73>3.0.CO;2-O
  41. Yan, W. and Zhang, L. (2013), "Fabric and the critical state of idealized granular assemblages subject to biaxial shear", Comput. Geotech., 49, 43-52. https://doi.org/10.1016/j.compgeo.2012.10.015
  42. Yang, J. and Dai, B.B. (2011), "Is the quasi-steady state a real behaviour? A micromechanical perspective", Geotechnique, 61(2), 175-184. https://doi.org/10.1680/geot.8.P.129
  43. Yang, J. and Wei, L.M. (2012), "Collapse of loose sand with the addition of fines: the role of particle shape", Geotechnique, 62(12), 1111-1125. https://doi.org/10.1680/geot.11.P.062
  44. Yang, J., Wei, L.M. and Dai, B.B. (2015), "State variables for silty sands: Global void ratio or skeleton void ratio?", Soil. Found., 55(1), 99-111. https://doi.org/10.1016/j.sandf.2014.12.008
  45. Yang, S.L., Sandven, R. and Grande, L. (2006), "Steady-state lines of sand-silt mixtures", Can. Geotech. J., 43(11), 1213-1219. https://doi.org/10.1139/t06-069
  46. Yimsiri, S. and Soga, K. (2010), "DEM analysis of soil fabric effects on behaviour of sand", Geotechnique, 60(6), 483-495. https://doi.org/10.1680/geot.2010.60.6.483
  47. Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z. and Chang, X. (2017), "DEM modeling of shear bands in crushable and irregularly shaped granular materials", Granul. Matter, 19: 25. https://doi.org/10.1007/s10035-017-0712-y
  48. Zlatovic, S. and Ishihara, K. (1997), "Normalized behaviors of very loose non-plastic soils: effects of fabric", Soil. Found., 37(4), 47-56. https://doi.org/10.3208/sandf.37.4_47