Acknowledgement
Supported by : National Natural Science Foundation of China, Tongji University
References
- Bobei, D.C., Lo, S.R., Wanatowski, D., Gnanendran, C.T. and Rahman, M.M. (2009), "Modified state parameter for characterizing static liquefaction of sand with fines", Can. Geotech. J., 46(3), 281-295. https://doi.org/10.1139/T08-122
- Bolton, M.D., Nakata, Y. and Cheng, Y.P. (2008), "Micro- and Macro-mechanical behavior of DEM crushable materials", Geotechnique, 58(6), 471-480. https://doi.org/10.1680/geot.2008.58.6.471
- Carraro, J.A.H., Bandini, P. and Salgado, R. (2003), "Liquefaction resistance of clean and non-plastic silty sands based on cone penetration resistance", J. Geotech. Geoenviron. Eng., 129(11), 965-976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
- Chang, C.S. and Yin, Z.Y. (2011), "Micromechanical modeling for behavior of silty sand with influence of fine content", Int. J. Solids Struct., 48(19), 2655-2667. https://doi.org/10.1016/j.ijsolstr.2011.05.014
- Chang, C.S., Meidani, M. and Deng, Y. (2017), "A comparison model for sand-silt mixtures based on the concept of active and inactive voids", Acta Geotech., 12(6), 1301-1317. https://doi.org/10.1007/s11440-017-0598-1
- Cundall, P.A. (1971), "A computer model for simulating progressive, large scale movements in blocky rock systems", Proceedings of the International Symposium on Rock Mechanics, Nancy, France, October.
- Dai, B.B. and Yang, J. (2017), "On shear strength of assemblies of frictionless particles", Int. J. Geomech., 17(11), 04017102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001005
- Dai, B.B., Yang, J. and Luo, X. (2015), "A numerical analysis of the shear behavior of granular soil with fines", Particuology, 21, 160-172. https://doi.org/10.1016/j.partic.2014.08.010
- Dai, B.B., Yang, J. and Zhou, C.Y. (2017), "Micromechanical origin of angle of repose in granular materials", Granul. Matter, 19(2), 24. https://doi.org/10.1007/s10035-017-0709-6
- Georgiannou, V.N., Burland, J.B. and Hight, H.W. (1990), "The undrained behavior of clayey sands in triaxial compression and extension", Geotechnique, 40(3), 431-449. https://doi.org/10.1680/geot.1990.40.3.431
- Gu, X.Q., Huang, M.S., and Qian, J.G. (2014), "DEM investigation on the evolution of microstructure in granular soils under shearing", Granul. Matter, 16(1), 91-106. https://doi.org/10.1007/s10035-013-0467-z
- Hsiao, D.H. and Phan, V.T.A. (2014), "Effects of silt contents on the static and dynamic properties of sand-silt mixtures", Geomech. Eng., 7(3), 297-316. https://doi.org/10.12989/gae.2014.7.3.297
- Hyodo, M., Wu, Y., Kajiyama, S., Nakata, Y. and Yoshimoto, N. (2017), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127
- Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351
- Itasca. (2005), User's Manual for PFC2D, Itasca Consulting Group, Inc.
- Kenney, T.C. (1977), "Residual strengths of mineral mixtures", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, July.
- Kuerbis, R.H., Negussey, D. and Vaid, Y.P. (1988), "Effect of gradation and fines content on the undrained response of sand", Geotech. Special Publ., 21, 330-345.
- Lade, P.V. and Yamamuro, J.A. (1997), "Effects of non-plastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052
- Lashkari, A. (2014), "Recommendations for extension and recalibration of an existing sand constitutive model taking into account varying non-plastic fines content", Soil Dyn. Earthq. Eng., 61, 212-238. https://doi.org/10.1016/j.soildyn.2014.02.012
- Ma, G., Chang, X.L., Zhou, W. and Ng, T.T. (2014), "Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study" Geomech. Eng., 7(3), 317-333. https://doi.org/10.12989/gae.2014.7.3.317
- Mitchell, J.K. (1976), Fundamentals of Soil Behaviors, Wiley, New York, U.S.A.
- Mohammadi, A. and Qadimi, A. (2015), "A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio", Acta Geotech., 10(5), 587-606. https://doi.org/10.1007/s11440-014-0318-z
- Monkul, M.M. (2013), "Influence of gradation on shear strength and volume change behavior of silty sands", Geomech. Eng., 5(5), 401-417. https://doi.org/10.12989/gae.2013.5.5.401
- Murthy, T.G., Loukidis, D., Carraro, J. A.H. and Salgado, R. (2007), "Undrained monotonic response of clean and silty sands", Geotechnique, 57(3), 273-288. https://doi.org/10.1680/geot.2007.57.3.273
- Ni, Q., Tan, T.S., Dasari, G.R. and Hight, D.W. (2004), "Contribution of fines to the compressive strength of mixed soils", Geotechnique, 54(9), 561-569. https://doi.org/10.1680/geot.2004.54.9.561
- Patil, U.D., Puppala, A.J., Hoyos, L.R. and Pedarla, A. (2017), "Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing", Eng. Geol., 231, 21-33. https://doi.org/10.1016/j.enggeo.2017.10.011
- Pitman, T.D., Robertson, P.K. and Sego, D.C. (1994), "Influence of fines on the collapse of loose sands", Can. Geotech. J., 31(5), 728-739. https://doi.org/10.1139/t94-084
- Polito, C.P. and Martin II, J.R. (2001), "Effects of non-plastic fines on the liquefaction resistance of sands", J. Geotech. Geoenviron. Eng., 127(5), 408-415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
- Porcino, D.D. and Diano, V. (2017), "The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures", Soil Dyn. Earthq. Eng., 101, 311-321. https://doi.org/10.1016/j.soildyn.2017.07.015
- Qian, J.G., You, Z., Huang, M.S. and Gu, X.Q. (2013), "A micromechanics-based model for estimating localized failure with effects of fabric anisotropy", Comput. Geotech., 50, 90-100. https://doi.org/10.1016/j.compgeo.2013.01.001
- Rahman, M., Lo, S. and Dafalias, Y. (2014), "Modelling the static liquefaction of sand with low-plasticity fines", Geotechnique, 64(11), 881-894. https://doi.org/10.1680/geot.14.P.079
- Rahman, M.M., Lo, S.R. and Gnanendran C.T. (2008), "On equivalent granular void ratio and steady state behavior of loose sand with fines", Can. Geotech. J., 45(10), 1439-1456. https://doi.org/10.1139/T08-064
- Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601
- Thevanayagam, S. and Mohan, S. (2000), "Intergranular state variables and stress-strain behaviour of silty sands", Geotechnique, 50(1), 1-23. https://doi.org/10.1680/geot.2000.50.1.1
- Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands and sandy silts", J. Geotech. Geoenviron. Eng., 128(10), 849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
- Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 47(2), 319-329. https://doi.org/10.1680/geot.1997.47.2.319
- Vahidi-Nia, F., Lashkari, A. and Binesh, S.M. (2015), "An insight into the mechanical behavior of binary granular soils", Particuology, 21, 82-89. https://doi.org/10.1016/j.partic.2014.11.006
- Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/gae.2015.9.6.815
- Yamamuro, J.A. and Lade, P.V. (1997), "Static liquefaction of very loose sands", Can. Geotech. J., 34(6), 905-917. https://doi.org/10.1139/t97-057
- Yamamuro, J.A. and Lade, P.V. (1999), "Experiments and modelling of silty sands susceptible to static liquefaction", Mech. Cohes. Frict. Mater. Struct., 4(6), 545-564. https://doi.org/10.1002/(SICI)1099-1484(199911)4:6<545::AID-CFM73>3.0.CO;2-O
- Yan, W. and Zhang, L. (2013), "Fabric and the critical state of idealized granular assemblages subject to biaxial shear", Comput. Geotech., 49, 43-52. https://doi.org/10.1016/j.compgeo.2012.10.015
- Yang, J. and Dai, B.B. (2011), "Is the quasi-steady state a real behaviour? A micromechanical perspective", Geotechnique, 61(2), 175-184. https://doi.org/10.1680/geot.8.P.129
- Yang, J. and Wei, L.M. (2012), "Collapse of loose sand with the addition of fines: the role of particle shape", Geotechnique, 62(12), 1111-1125. https://doi.org/10.1680/geot.11.P.062
- Yang, J., Wei, L.M. and Dai, B.B. (2015), "State variables for silty sands: Global void ratio or skeleton void ratio?", Soil. Found., 55(1), 99-111. https://doi.org/10.1016/j.sandf.2014.12.008
- Yang, S.L., Sandven, R. and Grande, L. (2006), "Steady-state lines of sand-silt mixtures", Can. Geotech. J., 43(11), 1213-1219. https://doi.org/10.1139/t06-069
- Yimsiri, S. and Soga, K. (2010), "DEM analysis of soil fabric effects on behaviour of sand", Geotechnique, 60(6), 483-495. https://doi.org/10.1680/geot.2010.60.6.483
- Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z. and Chang, X. (2017), "DEM modeling of shear bands in crushable and irregularly shaped granular materials", Granul. Matter, 19: 25. https://doi.org/10.1007/s10035-017-0712-y
- Zlatovic, S. and Ishihara, K. (1997), "Normalized behaviors of very loose non-plastic soils: effects of fabric", Soil. Found., 37(4), 47-56. https://doi.org/10.3208/sandf.37.4_47