Acknowledgement
Supported by : Central Universities, National Natural Science Foundation of China
References
- Bathurst, R.J. and Knight, M.A. (1998), "Analysis of geocell reinforced-soil covers over large span conduits", Comput. Geotech., 22(3-4), 205-219. https://doi.org/10.1016/S0266-352X(98)00008-1
- Cassidy, M., Uzielli, M. and Tian, Y.H. (2013), "Probabilistic combined loading failure envelopes of a strip footing on spatially variable soil", Comput. Geotech., 49, 191-205. https://doi.org/10.1016/j.compgeo.2012.10.008
- Chen, R.H., Wu, C.P., Huang, F.C. and Shen, C.W. (2013), "Numerical analysis of geocell-reinforced retaining structures", Geotext. Geomembranes, 39(8), 51-62. https://doi.org/10.1016/j.geotexmem.2013.07.003
- Cox, A.D., Eason, G. and Hopkins, H.G. (1961), "Axially symmetric plastic deformation of soils", Proc. Royal Soc. London Ser. A, 254, 1-45.
- Dash, S.K., Sireesh, S. and Sitharam, T. G. (2003), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembranes, 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7
- Gourvenec, S. and Randolph, M. (2003), "Effect of strength nonhomogeneity on the shape of failure envelopes for combined loading of strip and circular foundations on clay", Geotechnique, 53(6), 575-586. https://doi.org/10.1680/geot.2003.53.6.575
- Griffiths, D.V. and Fenton, G.A. (2001), "Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited", Geotechnique, 51(4), 351-359. https://doi.org/10.1680/geot.2001.51.4.351
- Han, J., Yang, X.M., Leshchinsky, D. and Parsons, R.L. (2008), "Behavior of geocell-reinforced sand under a vertical load", Transport. Res. Rec. J. Transport. Res. Board, (2045), 95-101.
- Hedge, A. and Sitharam, T.G. (2013), "Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds", Int. J. Geotech. Eng., 7(4), 346-354. https://doi.org/10.1179/1938636213Z.00000000043
- Hegde, A. and Sitharam, T.G. (2015a), "3-Dimensional numerical modelling of geocell reinforced sand beds", Geotext. Geomembranes, 43(2), 171-181. https://doi.org/10.1016/j.geotexmem.2014.11.009
- Hegde, A.M. and Sitharam, T.G. (2015b), "Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets", Can. Geotech. J., 52(9), 1-12. https://doi.org/10.1139/cgj-2013-0324
- Houlsby, G.T. and Wroth, C.P. (1983), "Calculation of stresses on shallow penetrometers and footings", Proceedings of the IUTAM/IUGG Seabed Mechanics, Newcastle, U.K., September.
- Krishnaswamy, N R., Rajagopal, K. and Madhavi Latha, G. (2000), "Model studies on geocell supported embankments constructed over a soft clay foundation", Geotech. Test. J., 23(2), 45-54. https://doi.org/10.1520/GTJ11122J
- Leshchinsky, B. and Ling, H. (2013a), "Effects of geocell confinement on strength and deformation behavior of gravel." J. Geotech. Geoenviron. Eng., 139(2), 340-352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757
- Leshchinsky, B. and Ling, H. (2013b), "Numerical modeling of behavior of railway ballasted structure with geocell confinement", Geotext. Geomembranes, 36, 33-43. https://doi.org/10.1016/j.geotexmem.2012.10.006
- Li, C., Ashlock, J.C., Cetin, B., Jahren, C.T. and Goetz, V. (2018), "Performance-based design method for gradation and plasticity of granular road surface materials", Transportation Research Record, 0361198118787372.
- Li, C., Ashlock, J.C., White, D.J. and Vennapusa, P.K. (2019), "Mechanistic-based comparisons of stabilised base and granular surface layers of low-volume roads", Int. J. Pavement Eng., 20(1), 112-124. https://doi.org/10.1080/10298436.2017.1321417
- Madhavi Latha, G. and Rajagopal, K. (2007), "Parametric finite element analyses of geocell-supported embankment", Can. Geotech. J., 44(8), 917-927. https://doi.org/10.1139/T07-039
- Madhavi Latha, G., Dash, S.K. and Rajagopal, K. (2008), "Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings", Geotech. Geol. Eng., 26(4), 387-398. https://doi.org/10.1007/s10706-008-9176-5
- Madhavi Latha, G., Dash, S.K. and Rajagopal,K. (2009), "Numerical simulation of the behavior of geocell reinforced sand in foundations", Int. J. Geomech., 9(4), 143-152. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(143)
- Martin, C.M. (2001), "Vertical bearing capacity of skirted circular foundations on Tresca soil", Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Lahore, Pakistan, December.
- Mehdipour, I., Ghazavi, M. and Moayed, R.Z. (2013), "Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect", Geotext. Geomembranes, 37, 23-34. https://doi.org/10.1016/j.geotexmem.2013.01.001
- Monroy Aceves, C., Mcmillan, A.J., Sutcliffe, M.P.F., Stronge, W.J., Choudhry, R.S. and Care, I.C.D. (2010), Low-Speed Impact Damage in Hybrid 2D-Braided Composite Plates, in Recent Advances in Textile Composites, DEStech Publications, Inc., 306-313.
- Qiu, L.J., Hao, M.D. and Wu, Y.P. (2017), "Potential impacts of climate change on carbon dynamics in a rain-fed agroecosystem on the Loess Plateau of China", Sci. Total Environ., 577, 267-278. https://doi.org/10.1016/j.scitotenv.2016.10.178
- Rea, C. and Mitchell, J.K. (1978), "Sand reinforcement using paper grid cells", Proceedings of the Symposium on Earth Reinforcement, Pittsburgh, Pennsylvania, U.S.A., April
- Saride, S., Gowrisetti, S., Sitharam, T.G. and Puppala, A.J. (2009), "Numerical simulation of geocell-reinforced sand and clay", Ground Improv., 162(4), 185-198. https://doi.org/10.1680/grim.2009.162.4.185
- Sitharam, T.G. and Sireesh, S. (2005), "Behaviour of embedded footings supported on geocell reinforced foundation beds", Geotech. Test. J., 28(5), 452-463.
- Sitharam, T.G., Sireesh, S. and Dash, S.K. (2005), "Model studies of a circular footing supported on geocell-reinforced clay", Can. Geotech. J., 42(2), 693-703. https://doi.org/10.1139/t04-117
- Webster, S.L. (1979a), "Investigation of beach sand trafficability enhancement using sand-grid confinement and membrane reinforcement concepts", Report 1, Sand Test Sections 1 and 2, Technical Report GL-79-20, Geotechnical Laboratory, US Army Corps of Engineers Waterways Experimentation Station, Vicksburg, Mississippi, U.S.A.
- Webster, S.L. (1979b), "Investigation of beach sand trafficability enhancement using sand-grid confinement and membrane reinforcement concepts", Report 1, Sand Test Sections 3 and 4, Technical Report GL-79-20, Geotechnical Laboratory, US Army Corps of Engineers Waterways Experimentation Station, Vicksburg, Mississippi, U.S.A.
- Webster, S.L. and Watkins, J.E. (1977), "Investigation of construction techniques for tactical bridge approach roads across soft ground", Technical Report S-77-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, U.S.A.
- Xie, Y.L. and Yang, X.H. (2009), "Characteristics of a new-type geocell flexible retaining wall", J. Mater. Civ. Eng., 21(4),171-175. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:4(171)
- Yang, X.M., Han, J., Parsons, R.L. and Leshchinsky, D. (2010), "Three-dimensional numerical modeling of single geocellreinforced sand", Front. Arch. Civ. Eng. China, 4(2), 233-240. https://doi.org/10.1007/s11709-010-0020-7
Cited by
- Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.589