Acknowledgement
Supported by : National Center for Research of Earthquake Engineering (NCREE), Ministry of Science and Technology
References
- AC156 (2010), Acceptance Criteria for Seismic Qualification by Shake-table Testing of Nonstructural Components and Systems. ICC Evaluation Service inc.
- Bahar, A., Salavati-Khoshghalb, M. and Ejabati, S.M. (2018), "Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping", Smart Struct. Syst., 21(3), 359-371. https://doi.org/10.12989/SSS.2018.21.3.359
- Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servohydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. D., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chai, J.F., Loh, C.H. and Sato, T. (2002), "Modeling of phase spectrum to simulate design ground motions", J. Chinese Inst. Engineers, 25(4), 447-459. https://doi.org/10.1080/02533839.2002.9670719
- Chen, P.C. and Tsai, K.C. (2013) "Dual compensation strategy for real-time hybrid testing", Earthq. Eng. Struct. D., 42(1), 1-23. https://doi.org/10.1002/eqe.2189
- Cho, S.W., Kim, B.W., Jung, H.J. and Lee, I.W. (2005) "Implementation of modal control for seismically excited structures using magnetorheological dampers", Journal of Engineering Mechanics (ASCE), 131(2), 177-184. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(177)
- Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability delay compensation for real-time substructure testing", J. Eng. Mech. - ASCE, 128(12), 1276 -1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996) "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Friedman, A., Dyke, S.J., Phillips, B.M., Ahn, R., Dong, B., Chae, Y., Castaneda, N., Jiang, Z., Zhang, J., Cha, Y., Ozdagli, A.I., Spencer, B.F., Ricles J.M., Christenson, R., Agrawal, A. and Sause, R. (2015), "Large-scale real-time hybrid simulation for evaluation of advanced damping system performance", J. Struct. Eng. - ASCE, 141(6), 04014150. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001093
- Hayati, S. and Song, W. (2017) "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Realtime hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. D., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Javanbakht, M. and Amini, F. (2016), "Application of simple adaptive control to an mr damper-based control system for seismically excited nonlinear buildings", Smart Struct. Syst., 18(6), 1251-1267. https://doi.org/10.12989/sss.2016.18.6.1251
- Jung, R.Y., Shing, P.B., Stauffer, E. and Bradford, T. (2007), "Performance of a real-time pseudodynamic test system considering nonlinear structural response", Earthq. Eng. Struct. D., 36(12), 1785-1809. https://doi.org/10.1002/eqe.722
- Liao, W.I., Chai, J.F., Loh, C.H. and Huang, S.H. (2013), "Seismic performance of raised floor system by shake-table excitations", Struct. Des. Tall Spec. Build., 22(10), 770-782. https://doi.org/10.1002/tal.725
- Mamdani, E.H. (1974), "Application of fuzzy algorithms for control of simple dynamic plant", Proceedings of the Institution of Electrical Engineers, 121(12), 1585-1588. https://doi.org/10.1049/piee.1974.0328
- Ramallo, J.C., Johnson, E.A. and Spencer, B.F. (2002), "Smart base isolation systems", J. Eng. Mech. - ASCE, 128(10), 1088-1099. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
- Shao, X., Lindt, J., Bahmani, P., Pang, W., Ziaei, E., Symans, M., Tian, J. and Dao, T. (2014), "Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device", Smart Struct. Syst., 14(6), 1031-1054. https://doi.org/10.12989/sss.2014.14.6.1031
- Wang, S.J., Hwang, J.S., Chang, K.C., Shiau, C.Y., Lin, W.C., Tsai, M.S., Hong, J.X. and Yang, Y.H. (2014), "Sloped multiroller isolation devices for seismic protection of equipment and facilities", Earthq. Eng. Struct. D., 43(10),1443-1461. https://doi.org/10.1002/eqe.2404
- Wang, S.J., Yu, C.H., Lin, W.C., Hwang, J.S. and Chang, K.C. (2017), "A generalized analytical model for sloped rolling-type seismic isolators", Eng. Struct., 138, 434-446. https://doi.org/10.1016/j.engstruct.2016.12.027
- Zhang, R., Phillips B.M., Taniguchi, S., Ikenaga, M. and Ikago, K. (2017) "Shake table real-time hybrid simulation techniques for the performance evaluation of buildings with inter-story isolation", Struct. Control Health Monit., 24(10), e1971. https://doi.org/10.1002/stc.1971
- Zheng, L. and Li, Y.N. (2009), "Fuzzy-sliding mode control of a full car semi-active suspension systems with mr dampers", Smart Struct. Syst., 5(3), 261-277. https://doi.org/10.12989/sss.2009.5.3.261
Cited by
- A versatile small-scale structural laboratory for novel experimental earthquake engineering vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.337
- A novel risk assessment approach for data center structures vol.19, pp.6, 2019, https://doi.org/10.12989/eas.2020.19.6.471
- Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information vol.20, pp.1, 2019, https://doi.org/10.12989/eas.2021.20.1.039
- Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system vol.28, pp.1, 2019, https://doi.org/10.12989/sss.2021.28.1.105