References
- AlThobiani, F. and Ball, A. (2014), "An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks", Expert Syst. Appl., 41(9), 4113-4122. https://doi.org/10.1016/j.eswa.2013.12.026
- Aretakis, N. and Mathioudakis, K. (1998), "Classification of radial compressor faults using pattern-recognition techniques", Control Eng.Pract., 6(10), 1217-1223. https://doi.org/10.1016/S0967-0661(98)00085-9
- Attoui, I., Fergani, N., Boutasseta, N., Oudjani, B., and Deliou, A. (2017), "A new time-frequency method for identification and classification of ball bearing faults", J. Sound Vib., 397, 241-265. https://doi.org/10.1016/j.jsv.2017.02.041
- Cui, H., Zhang, L., Kang, R. and Lan, X. (2009), "Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method", J. Loss Prevent. Proc., 22(6), 864-867. https://doi.org/10.1016/j.jlp.2009.08.012
- Elhaj, M., Gu, F., Ball, A.D., Albarbar, A., Al-Qattan, M. and Naid, A. (2008), "Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring", Mech. Syst. Signal Pr., 22(2), 374-389. https://doi.org/10.1016/j.ymssp.2007.08.003
- Fan, Y., Nowaczyk, S. and Rognvaldsson, T. (2015), "Evaluation of self-organized approach for predicting compressor faults in a city bus fleet", Procedia Comput. Sci., 53, 447-456. https://doi.org/10.1016/j.procs.2015.07.322
- Jung, U. and Koh, B.H. (2014), "Bearing fault detection through multiscale wavelet scalogram-based SPC", Smart Struct. Syst., 14(3), 377-395. https://doi.org/10.12989/sss.2014.14.3.377
- Kim, M. and Kim, M. S. (2005), "Performance investigation of a variable speed vapor compression system for fault detection and diagnosis", Int. J. Refrig., 28(4), 481-488. https://doi.org/10.1016/j.ijrefrig.2004.11.008
- Lei, Y., He, Z. and Zi, Y. (2008), "A new approach to intelligent fault diagnosis of rotating machinery", Expert Syst. Appl., 35(4), 1593-1600. https://doi.org/10.1016/j.eswa.2007.08.072
- Mathioudakis, K. and Stamatis, A. (1994), "Compressor fault identification from overall performance data based on adaptive stage stacking", J. Eng. Gas Turb. Power., 116(1), 156-164. https://doi.org/10.1115/1.2906785
- Pichler, K., Lughofer, E., Pichler, M., Buchegger, T., Klement, E. P. and Huschenbett, M. (2016), "Fault detection in reciprocating compressor valves under varying load conditions", Mech. Syst. Signal Pr., 70, 104-119. https://doi.org/10.1016/j.ymssp.2015.09.005
- Qi, G., Tsai, W.T., Hong, Y., Wang, W., Hou, G. and Zhu, Z. (2016), "Fault-diagnosis for reciprocating compressors using big data", Proceedings of the 2016 IEEE 2nd International Conference on Big Data Computing Service and Applications., 72-81.
- Shen, C., Wang, D., Liu, Y., Kong, F. and Tse, P.W. (2014), "Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines", Smart Struct. Syst., 13(3), 453-471. https://doi.org/10.12989/sss.2014.13.3.453
- Shin, K. and Hammond, J. (2008), Fundamentals of signal processing for sound and vibration engineers, John Wiley & Sons.
- Tassou, S. A., and Grace, I. N. (2005), "Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems", Int. J. Refrigeration, 28(5), 680-688. https://doi.org/10.1016/j.ijrefrig.2004.12.007
- Tran, V.T., AlThobiani, F., Tinga, T., Ball, A. and Niu, G. (2017), "Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network", Proceedings of the Institution of Mechanical Engineers., Part C: J. Mech. Eng. Sci., 0954406217740929.
- Wang, Y., Xue, C., Jia, X. and Peng, X. (2015), "Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion", Mech. Syst. Signal Pr., 56, 197-212. https://doi.org/10.1016/j.ymssp.2014.11.002
- White, P.R., Tan, M.H. and Hammond, J.K. (2006), "Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation", J. Sound Vib., 290(3-5), 676-689. https://doi.org/10.1016/j.jsv.2005.04.029
- Yang, B. S., Hwang, W. W., Kim, D. J., and Tan, A. C. (2005), "Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines", Mech. Syst. Signal Pr., 19(2), 371-390. https://doi.org/10.1016/j.ymssp.2004.06.002
- Zhou, Y., MA, X. and Yuan, Y. (2006), "Reciprocating compressor fault diagnosis based on vibration signal information entropy", Machine Tool & Hydraulics., 10, 069.
- Zhu, D., Feng, Y., Chen, Q. and Cai, J. (2010), "Image recognition technology in rotating machinery fault diagnosis based on artificial immune", Smart Struct. Syst., 6(4), 389-403. https://doi.org/10.12989/sss.2010.6.4.389