DOI QR코드

DOI QR Code

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao (Robotics Institute, Beihang University) ;
  • Yu, Jingjun (Robotics Institute, Beihang University) ;
  • Alaluf, David (Active Structures Laboratory, Universite Libre de Bruxelles) ;
  • Mokrani, Bilal (Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool) ;
  • Preumont, Andre (Active Structures Laboratory, Universite Libre de Bruxelles)
  • Received : 2018.11.08
  • Accepted : 2018.12.20
  • Published : 2019.01.25

Abstract

This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Achkire, Y. and Preumont, A. (1998), "Optical measurement of cable and string vibration", Shock Vib., 5(3), 171-179. https://doi.org/10.1155/1998/387973
  2. An, Y., Spencer, B.F. and Ou, J. (2015), "A test method for damage diagnosis of suspension bridge suspender cables", Comput.-Aided Civil Infrastruct. Eng., 30(10), 771-784. https://doi.org/10.1111/mice.12144
  3. Bouaanani, N. (2006), "Numerical investigation of the modal sensitivity of suspended cables with localized damage", J. Sound Vib., 292(3), 1015-1030. https://doi.org/10.1016/j.jsv.2005.09.013
  4. Cantieni, R. (2005), "Experimental methods used in system identification of civil engineering structures", Proceedings of the 1st int operational modal analysis conference (IOMAC).
  5. Casciati, F., Casciati, S. and Faravelli, L. (2017), "A contribution to the modelling of human induced excitation on pedestrian bridges", Struct. Saf., 66, 51-61. https://doi.org/10.1016/j.strusafe.2017.01.004
  6. Catbas, F.N., Brown, D.L. and Aktan, A.E. (2006), "Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures", J. Struct. Eng., 132(11), 1699-1712. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1699)
  7. Catbas, F.N., Gul, M. and Burkett, J.L. (2008), "Conceptual damage-sensitive features for structural health monitoring: laboratory and field demonstrations", Mech. Syst. Signal Pr., 22(7), 1650-1669. https://doi.org/10.1016/j.ymssp.2008.03.005
  8. Cho, S., Jo, H., Jang, S., Park, J., Jung, H. J., Yun, C. B. and Seo, J. W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
  9. Cho, K.H., Kim, H.M., Jin, Y.H., Liu, F., Moon, H., Koo, J.C. et al. (2013), "Inspection robot for hanger cable of suspension bridge: mechanism design and analysis", IEEE/ASME T. Mechatron., 18(6), 1665-1674. https://doi.org/10.1109/TMECH.2013.2280653
  10. Chen, Z.W., Zhu, S., Xu, Y.L., Li, Q. and Cai, Q.L. (2014), "Damage detection in long suspension bridges using stress influence lines", J. Bridge Eng., 20(3), 05014013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000681
  11. Ding, Y., Li, A., Du, D. and Liu, T. (2010), "Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge", Struct. Infrastruct. Eng., 6(6), 725-739. https://doi.org/10.1080/15732470802187680
  12. Goi, Y. and Kim, C.W. (2016), "Mode identifiability of a multispan cable-stayed bridge utilizing stabilization diagram and singular values", Smart Struct. Syst., 17(3), 391-411. https://doi.org/10.12989/sss.2016.17.3.391
  13. Hunt, D.L. (1992), "Application of an enhanced coordinate modal assurance criterion", Proceedings of the 10th International modal analysis conference.
  14. Huth, O., Feltrin, G., Maeck, J., Kilic, N. and Motavalli, M. (2005), "Damage identification using modal data: Experiences on a prestressed concrete bridge", J. Struct. Eng., 131(12), 1898-1910. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1898)
  15. Huang, M.H., Thambiratnam, D.P. and Perera, N.J. (2005), "Vibration characteristics of shallow suspension bridge with pre-tensioned cables", Eng. Struct., 27(8), 1220-1233. https://doi.org/10.1016/j.engstruct.2005.03.005
  16. Kim, J.T. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(12), 465-482. https://doi.org/10.12989/sss.2013.12.3_4.465
  17. Kim, S.W. and Kim, N.S. (2013), "Dynamic characteristics of suspension bridge hanger cables using digital image processing", NDT & E Int., 59, 25-33. https://doi.org/10.1016/j.ndteint.2013.05.002
  18. Koo, K.Y., Lee, J.J. and Yun, C.B. (2008), "Damage detection of bridge structures using modal flexibility under temperature variation", IFAC Proceedings, 41(2), 15762-15767. https://doi.org/10.3182/20080706-5-KR-1001.02665
  19. Ko, J.M., Ni, Y.Q., Zhou, H.F., Wang, J.Y. and Zhou, X.T. (2009), "Investigation concerning structural health monitoring of an instrumented cable-stayed bridge", Struct. Infrastruct. Eng., 5(6), 497-513. https://doi.org/10.1080/15732470701627893
  20. Ko, J.M., Sun, Z.G. and Ni, Y.Q. (2002), "Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge", Eng. Struct., 24(7), 857-868. https://doi.org/10.1016/S0141-0296(02)00024-X
  21. Li, H., Yang, H. and Hu, S.L.J. (2006), "Modal strain energy decomposition method for damage localization in 3D frame structures", J. Eng. Mech., 132(9), 941-951. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(941)
  22. Lepidi, M., Gattulli, V. and Vestroni, F. (2009), "Damage identification in elastic suspended cables through frequency measurement", J. Vib. Control, 15(6), 867-896. https://doi.org/10.1177/1077546308096107
  23. Lonetti, P. and Pascuzzo, A. (2014), "Vulnerability and failure analysis of hybrid cable-stayed suspension bridges subjected to damage mechanisms", Eng. Fail. Anal., 45(8), 470-495. https://doi.org/10.1016/j.engfailanal.2014.07.002
  24. Lin, S.W., Yi, T.H., Li, H.N. and Ren, L. (2017), "Damage detection in the cable structures of a bridge using the virtual distortion method", J. Bridge Eng., 22(8), 04017039. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001072
  25. Jaishi, B., Kim, H.J., Kim, M.K., Ren, W.X. and Lee, S.H. (2007), "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility", Mech. Syst. Signal Pr., 21(6), 2406-2426. https://doi.org/10.1016/j.ymssp.2007.01.003
  26. Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006
  27. Mei, D.P. (2017), "Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge", Smart Struct. Syst., 20(2), 197-205. https://doi.org/10.12989/SSS.2017.20.2.197
  28. Mrabet, E., Abdelghani, M. and Ben Kahla, N. (2014), "A new criterion for the stabilization diagram used with stochastic subspace identification methods: an application to an aircraft skeleton", J. Shock Vib., 2014.
  29. Meruane, V. and Heylen, W. (2011), "An hybrid real genetic algorithm to detect structural damage using modal properties", Mech. Syst. Signal Pr., 25(5), 1559-1573. https://doi.org/10.1016/j.ymssp.2010.11.020
  30. Ni, Y.Q., Zhou, H.F., Chan, K.C. and Ko, J.M. (2008), "Modal flexibility analysis of cable-stayed Ting Kau Bridge for damage identification", Comput.-Aided Civil Infrastruct. Eng., 23(3), 223-236. https://doi.org/10.1111/j.1467-8667.2008.00521.x
  31. Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
  32. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  33. Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878. https://doi.org/10.1006/mssp.1999.1249
  34. Peeters, B. and Ventura, C.E. (2003), "Comparative study of modal analysis techniques for bridge dynamic characteristics", Mech. Syst. Signal Pr., 17(5), 965-988. https://doi.org/10.1006/mssp.2002.1568
  35. Perera, R., Ruiz, A. and Manzano, C. (2007), "An evolutionary multi-objective framework for structural damage localization and quantification", Eng. Struct., 29(10), 2540-2550. https://doi.org/10.1016/j.engstruct.2007.01.003
  36. Preumont, A., Voltan, M., Sangiovanni, A., Mokrani, B. and Alaluf, D. (2016), "Active tendon control of suspension bridges", Smart Struct. Syst., 18(1), 31-52. https://doi.org/10.12989/sss.2016.18.1.031
  37. Reynders, E., Pintelon, R. and De Roeck, G. (2008), "Uncertainty bounds on modal parameters obtained from stochastic subspace identification", Mech. Syst. Signal Pr., 22(4), 948-969. https://doi.org/10.1016/j.ymssp.2007.10.009
  38. Reynders, E. and Roeck, G.D. (2010). "A local flexibility method for vibration-based damage localization and quantification", J. Sound Vib., 329(12), 2367-2383. https://doi.org/10.1016/j.jsv.2009.04.026
  39. Rainieri, C. and Fabbrocino, G. (2014), Operational modal analysis of civil engineering structures, Springer, New York, USA.
  40. Stubbs, N., Kim, J.T. and Farrar, C.R. (1995), "Field verification of a nondestructive damage localization and severity estimation algorithm", Proceedings-SPIE the international society for optical engineering, SPIE INTERNATIONAL SOCIETY FOR OPTICAL.
  41. Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2009), "Vibration based structural damage detection in flexural members using multi-criteria approach", J, Sound Vib., 323(3-5), 645-661. https://doi.org/10.1016/j.jsv.2009.01.019
  42. Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2011), "Damage detection in truss bridges using vibration based multi-criteria approach", Struct. Eng. Mech., 39(2), 187. https://doi.org/10.12989/sem.2011.39.2.187
  43. Toksoy, T. and Aktan, A.E. (1994), "Bridge-condition assessment by modal flexibility", Exp. Mech., 34(3), 271-278. https://doi.org/10.1007/BF02319765
  44. Talebinejad, I., Fischer, C. and Ansari, F. (2011), "Numerical evaluation of vibration-based methods for damage assessment of cable-stayed bridges", Comput.-Aided Civil Infrastruct. Eng., 26(3), 239-251. https://doi.org/10.1111/j.1467-8667.2010.00684.x
  45. Talebinejad, I., Sedarat, H., Emami-Naeini, A., Krimotat, A. and Lynch, J. (2014), "Implementation of damage detection algorithms for the Alfred Zampa memorial suspension bridge", Proc. SPIE, 9063, 906312.
  46. Turmo, J. and Luco, J.E. (2010), "Effect of hanger flexibility on dynamic response of suspension bridges", J. Eng. Mech., 136(12), 1444-1459. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000185
  47. Van Overschee, P. and De Moor, B.L. (2012), Subspace identification for linear systems: Theory-Implementation-Applications, Springer Science & Business Media.
  48. Vanniamparambil, P.A., Khan, F., Hazeli, K., Cuadra, J., Schwartz, E., Kontsos, A. et al. (2013), "Novel optico-acoustic nondestructive testing for wire break detection in cables", Struct. Control Health Monit., 20(11), 1339-1350. https://doi.org/10.1002/stc.1539
  49. Wu, L. and Casciati, F. (2014), "Local positioning systems versus structural monitoring: a review", Struct. Control Health Monit., 21(9), 1209-1221. https://doi.org/10.1002/stc.1643
  50. Wu, W.H., Wang, S.W., Chen, C.C. and Lai, G. (2016), "Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification", Smart Struct. Syst., 17(3), 363-389. https://doi.org/10.12989/sss.2016.17.3.363
  51. Wahab, M.A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295
  52. Wang, F.L., Chan, T.H.T., Thambiratnam, D.P. and Tan, A.C.C. (2013), "Damage diagnosis for complex steel truss bridges using multi-layer genetic algorithm", J. Civil Struct. Health Monit., 3(2), 117-127. https://doi.org/10.1007/s13349-013-0041-8
  53. Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. https://doi.org/10.12989/sss.2016.18.2.317
  54. Wickramasinghe, W.R., Thambiratnam, D.P., Chan, T.H. and Nguyen, T. (2016), "Vibration characteristics and damage detection in a suspension bridge", J. Sound Vib., 375, 254-274. https://doi.org/10.1016/j.jsv.2016.04.025
  55. Xu, F. and Wang, X. (2012), "Inspection method of cable-stayed bridge using magnetic flux leakage detection: principle, sensor design, and signal processing", J. Mech. Sci. Technol., 26(3), 661-669. https://doi.org/10.1007/s12206-011-1234-x
  56. Zejli, H., Gaillet, L., Laksimi, A. and Benmedakhene, S. (2012), "Detection of the presence of broken wires in cables by acoustic emission inspection", J. Bridge Eng., 17(6), 921-927. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000404

Cited by

  1. Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network vol.14, pp.6, 2019, https://doi.org/10.3390/a14060180