Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Anno, Y. (1984), "Requirements for modeling of a snowdrift", Cold Reg. Sci. Technol., 8(3), 241-252. https://doi.org/10.1016/0165-232X(84)90055-7
- Anno, Y. (1985), "Modelling a snowdrift by means of activated clay particles", Ann. Glaciol., 6(1), 48-52. https://doi.org/10.1017/S0260305500009976
- ANSYS Fluent User's Guide 16.1
- Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional, transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92(9), 725-747. https://doi.org/10.1016/j.jweia.2004.03.011
- Beyers, M. and Waechter, B. (2008), "Modeling transient snowdrift development around complex three-dimensional structures", J. Wind Eng. Ind. Aerod., 96(10), 1603-1615. https://doi.org/10.1016/j.jweia.2008.02.032
- Bintanja, R. (2000), "Snowdrift suspension and atmospheric turbulence, Part I: Theoretical background and model description", Bound.-Lay. Meteorol., 95(3), 343-368. https://doi.org/10.1023/A:1002676804487
- Blocken, B. (2015), "Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build. Environ., 91, 219-245. https://doi.org/10.1016/j.buildenv.2015.02.015
- Dvorak, F.A. (1969), "Calculation of turbulent boundary layers on rough surfaces in pressure gradient", AIAA J., 7(9), 1752-1759. https://doi.org/10.2514/3.5386
- Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B. (2007), "Best practice guideline for the CFD Simulation of Flows in the Urban Environment", COST Office, Brussels. (3-00-018312-4).
- Haehnel, R.B., Wilkinson, J.H. and Lever, J.H. (1993), "Snowdrift modeling in the CRREL wind tunnel", Proceedings of the 50th Eastern Snow Conference, Quebec City, Quebec, June, 8-10.
- Humphrey, J.A.C. (1990), "Fundamentals of fluid motion in erosion by solid particle impact", Int. J. Heat Fluid. Fl., 11(3), 170-195. https://doi.org/10.1016/0142-727X(90)90036-B
- Isyumov, N. and Mikitiuk, M. (1990), "Wind tunnel model tests of snow drifting on a two-level flat roof", J. Wind Eng. Ind. Aerod., 36, 893-904. https://doi.org/10.1016/0167-6105(90)90086-R
- Isyumov, N. and Mikitiuk, M. (1992), "Wind tunnel modeling of snow accumulations on large-area roofs", Proceedings of the second International Conference on Snow Engineering, 181-193.
- Iversen, J.D. (1979), "Drifting snow similitude-drift deposition rate correlation", Proceedings of the 5th International Conference on Wind Engineering. Pergamon Press, Fort Collins, 1037-1080.
- Iversen, J.D. (1980), "Drifting-snow similitude-transport-rate and roughness modeling", J. Glaciol., 26(94), 393-403. https://doi.org/10.1017/S0022143000010923
- Kind, R.J. (1976), "A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting", Atmos. Environ., 10(3), 219-227. https://doi.org/10.1016/0004-6981(76)90094-9
- Kind, R.J. (1986), "Snowdrifting: a review of modelling methods", Cold Reg. Sci. Technol., 12(3), 217-228. https://doi.org/10.1016/0165-232X(86)90036-4
- Kind, R.J. and Murray, S.B. (1982), "Saltation flow measurements relating to modeling of snowdrifting", J. Wind Eng. Ind. Aerod., 10(1), 89-102. https://doi.org/10.1016/0167-6105(82)90056-3
- Kuroiwa, D., Mizuno, Y. and Takeuchi, M. (1967), "Micromeritical properties of snow", Proceedings of the International Conference on Low Temperature Science: Physics of Snow and Ice, 1, 751-772 (2).
- Kwok, K.C.S., Kim, D.H., Smedley, D.J. and Rohde, H.F. (1992), "Snowdrift around buildings for Antarctic environment", J. Wind Eng. Ind. Aerod., 44(1-3), 2797-2808. https://doi.org/10.1016/0167-6105(92)90073-J
- Liston, G.E., Brown, R.L. and Dent, J. (1994), "A computational model of two phase, turbulent atmospheric boundary layer with blowing snow", Proceedings of the Workshop on the Modelling of Windblown Snow and Sand.
- Liston, G.E., Brown, R.L. and Dent, J.D. (1993), "A twodimensional computational model of turbulent atmospheric surface flows with drifting snow", Ann. Glaciol., 18(1), 281-286. https://doi.org/10.1017/S0260305500011654
- Liston, G.E. and Sturm, M. (1998), "A snow-transport model for complex terrain", J. Glaciol., 44(148), 498-516. https://doi.org/10.1017/S0022143000002021
- Liu, M., Zhang, Q., Fan, F. and Shen, S. (2018), "Experiments on natural snow distribution around simplified building models based on open air snow-wind combined experimental facility", J. Wind Eng. Ind. Aerod., 173, 1-13. https://doi.org/10.1016/j.jweia.2017.12.010
- Majowiecki, M. (1998). "Snow and wind experimental analysis in the design of long-span sub-horizontal structures", J. Wind Eng. Ind. Aerod., 74, 795-807. https://doi.org/10.1016/S0167-6105(98)00072-5
- Murakami, S. (1993), "Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46, 21-36. https://doi.org/10.1016/0167-6105(93)90112-2
- Murakami, S., Mochida, A. and Kato, S. (2003), "Development of local area wind prediction system for selecting suitable site for windmill", J. Wind Eng. Ind. Aerod., 91(12), 1759-1776. https://doi.org/10.1016/j.jweia.2003.09.040
- Naaim, M., Naaim-Bouvet, F. and Martinez, H. (1998), "Numerical simulation of drifting snow: erosion and deposition models", Ann. Glaciol., 26, 191-196. https://doi.org/10.1017/S0260305500014798
- O'Rourke, M., DeGaetano, A. and Tokarczyk, J.D. (2004), "Snow drifting transport rates from water flume simulation", J. Wind Eng. Ind. Aerod., 92(14), 1245-1264. https://doi.org/10.1016/j.jweia.2004.08.002
-
Okaze, T., Takano, Y., Mochida, A. and Tominaga, Y. (2015), "Development of a new k-
${\varepsilon}$ model to reproduce the aerodynamic effects of snow particles on a flow field", J. Wind Eng. Ind. Aerod., 144, 118-124. https://doi.org/10.1016/j.jweia.2015.04.016 - Powell, M.J. (1987), "Radial basis functions for multivariable interpolation: a review", Proceeding of the Algorithms for approximation, Clarendon Press, 143-167.
- Sato, T., Uematsu, T., Nakata, T. and Kaneda, Y. (1993), "Three dimensional numerical simulation of snowdrift", J. Wind Eng. Ind. Aerod., 46, 741-746. https://doi.org/10.1016/0167-6105(93)90344-N
- Satoh, K. and Takahashi, S. (2006), "Threshold wind velocity for snow drifting as a function of terminal fall velocity of snow particles", Bull. Glaciol. Res., 23(26), 13-21.
- Schaelin, A., Ilg, L. and Benesch, M. (2004), "Sow deposition around mountain hut-design optimization by CFD and scaled water channel model and realization of solutions", Proceedings of the Fifth International Conference on Snow Engineering, 5-8 July, Davos, Switzerland (p. 147), CRC Press.
- Serine, A., Shimura, M., Maruoka, A. and Hirano, H. (1999), "The numerical simulation of snowdrift around a building", Int. J. Comput. Fluid. D., 12(3-4), 249-255. https://doi.org/10.1080/10618569908940829
- Smedley, D.J., Kwok, K.C.S. and Kim, D.H. (1993), "Snowdrifting simulation around davis station workshop, Antarctica", J. Wind Eng. Ind. Aerod., 50, 153-162. https://doi.org/10.1016/0167-6105(93)90070-5
- Sundsbo, P.A. (1998), "Numerical simulations of wind deflection fins to control snow accumulation in building steps", J. Wind Eng. Ind. Aerod., 74, 543-552. https://doi.org/10.1016/S0167-6105(98)00049-X
- Tominaga, Y. (2017), "Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives", Cold. Reg. Sci. Technol., 150, 2-14. https://doi.org/10.1016/j.coldregions.2017.05.004
- Tominaga, Y., Akabayashi, S.I., Kitahara, T. and Arinami, Y. (2015), "Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations", Build. Environ., 84, 204-213. https://doi.org/10.1016/j.buildenv.2014.11.012
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
- Tominaga, Y., Mochida, A., Yoshino, H., Shida, T. and Okaze, T. (2006), "CFD prediction of snowdrift around a cubic building model", Proceeding of the fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, Japan Vol. 26.
- Tominaga, Y., Okaze, T. and Mochida, A. (2011), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020
- Tominaga, Y., Okaze, T., Mochida, A., Nemoto, M. and Ito, Y. (2009), "Prediction of snowdrift around a cube using CFD Model incorporating effect of snow particles on turbulent flow", Proceeding of the seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan.
- Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(12-15), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7
- Tutsumi, T., Chiba, T. and Tomabechi, T. (2012), "Snowdrifts on and around buildings based on field measurement", Proceedings of the 7th International Conference on Snow Engineering (Snow Engineering VII), Fukui, Japan.
- Uematsu, T., Nakata, T., Takeuchi, K., Arisawa, Y. and Kaneda, Y. (1991), "Three-dimensional numerical simulation of snowdrift", Cold Reg. Sci. Technol., 20(1), 65-73. https://doi.org/10.1016/0165-232X(91)90057-N
- Wang, W.H., Liao, H.L. and Li, M.S. (2013), "Numerical simulation of wind-induced roof snow distributions based on time variable boundary", J. Southwest Jiaotong Univ., 5, 851-856+967 (in Chinese).
- Wang, W.H., Liao, H.L. and Li, M.S. (2014), "Wind tunnel test on wind-induced roof snow distribution", Build. Struct., 35(5), 135-141. (in Chinese).
- Zhao, L., Yu, Z., Zhu, F., Qi, X. and Zhao, S. (2016). "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542. https://doi.org/10.12989/was.2016.23.6.523
- Zhou, X., Hu, J. and Gu, M. (2014), "Wind tunnel test of snow loads on a stepped flat roof using different granular materials", Nat. Hazards, 74(3), 1629-1648. https://doi.org/10.1007/s11069-014-1296-z
- Zhou, X., Kang, L., Gu, M., Qiu, L. and Hu, J. (2016), "Numerical simulation and wind tunnel test for redistribution of snow on a flat roof", J. Wind Eng. Ind. Aerod., 153, 92-105. https://doi.org/10.1016/j.jweia.2016.03.008
- Zhou, X., Kang, L., Yuan, X. and Gu, M. (2016), "Wind tunnel test of snow redistribution on flat roofs", Cold Reg. Sci. Technol., 127, 49-56. https://doi.org/10.1016/j.coldregions.2016.04.006
- Zhu, F., Yu, Z., Zhao, L., Xue, M. and Zhao, S. (2017), "Adaptivemesh method using RBF interpolation: A time-marching analysis of steady snow drifting on stepped flat roofs", J. Wind Eng. Ind. Aerod., 171, 1-11. https://doi.org/10.1016/j.jweia.2017.09.008
Cited by
- Wind Tunnel Tests of Wind-Induced Snow Distribution for Cubes with Holes vol.2019, 2019, https://doi.org/10.1155/2019/4153481
- CFD simulations can be adequate for the evaluation of snow effects on structures vol.13, pp.4, 2019, https://doi.org/10.1007/s12273-020-0643-0
- Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.549
- CFD and Mapping-Induced FSI Analyses of Soundproof Tunnels with Un-symmetric Shapes under a Turbulent Wind Load vol.25, pp.10, 2021, https://doi.org/10.1007/s12205-021-1593-5
- Spatial snowdrift modelling for an open natural terrain using a physically‐based linear particle distribution equation vol.36, pp.1, 2019, https://doi.org/10.1002/hyp.14468