References
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031
- Akbas, S.D. (2015a), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
- Akbas, S.D. (2015b), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(4), 1450065. https://doi.org/10.1142/S0219455414500655
- Akbas, S.D. (2015c), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477
- Akbas, S.D. (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/CSM.2017.6.4.399
- Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/SCS.2017.24.5.579
- Akbas, S.D. (2017c), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764
- Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207.
- Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
- Akbas, S.D. (2018b), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/WAS.2018.27.1.059
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S., Tounsi, A. and Bernard, F. (2018), "Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models", Struct. Eng. Mech., 66(3), 317-328. https://doi.org/10.12989/SEM.2018.66.3.317
- Euler, L. (1744), Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Lausanne and Geneva: Apud Marcum-Michaelem Bousquet & Socio, 1-322.
- Gasik, M. (1995), "Scand. Ch226", Acta Polytech, 72.
- Gasik, M.M. (1998), "Micromechanical modeling of functionally graded materials", Comput. Mater. Sci., 13, 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
- Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Jaesang, Y. and Addis, K. (2014), "Modeling functionally graded materials containing multiple heterogeneities", Acta Mech., 225(7), 1931-1943. https://doi.org/10.1007/s00707-013-1033-9
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Ju, J. and Chen, T.M. (1994), "Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities", Acta Mech., 103(1-4), 103-121. https://doi.org/10.1007/BF01180221
- Kendall, K., Howard, A., Birchall, J., Prat, P., Proctor, A. and Jefferies, S.A. (1983), "The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials", Phil. Trans. Roy. Soc. Lond. A, 310(1511), 139-153. https://doi.org/10.1098/rsta.1983.0073
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comp. Meth. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mishnaevsky, J.L. (2007), Computational Mesomechanics of Composites, John Wiley & Sons, U.K.
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 1-17.
- Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philosoph. Mag., 41(245), 742-746.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Yin, H.M., Paulino, G.H., Buttlar, W.G. and Sun, L.Z. (2007), "Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions", J. Mech. Phys. Sol., 55(1), 132-160. https://doi.org/10.1016/j.jmps.2006.05.002
-
Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of
$ZrO_2$ -NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
Cited by
- A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.503
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
- Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.015
- Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149
- Mechanics of anisotropic cardiac muscles embedded in viscoelastic medium vol.12, pp.1, 2019, https://doi.org/10.12989/acc.2021.12.1.057