DOI QR코드

DOI QR Code

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur (Department of Civil Engineering, Munzur Univeristy, 62000 Aktuluk Campus)
  • 투고 : 2018.09.03
  • 심사 : 2018.11.27
  • 발행 : 2019.01.25

초록

It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

키워드

참고문헌

  1. Altunisik, A.C., Kanbur, B. and Genc, A.F. (2015), "The effect of arch geometry on the structural behavior of masonry bridges", Smart Struct. Syst., 16(6), 1069-1089. https://doi.org/10.12989/sss.2015.16.6.1069
  2. Binda, L. and Tiraboschi, C. (1999), "Flat-jack test: A slightly destructive technique for the diagnosis of brick and stone masonry structures", Int. J. Restorat. Build. Monum., 5(5), 449-472.
  3. Costa, C., Arede, A., Costa, A., Caetano, E., Cunha, A. and Magalhaes, F. (2015), "Updating numerical models of masonry arch bridges by operational modal analysis", Int. J. Architect. Herit., 9(7), 760-774. https://doi.org/10.1080/15583058.2013.850557
  4. Diaferio, M., Foti, D. and Potenza, F. (2018), "Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data", Eng. Struct., 156, 433-442. https://doi.org/10.1016/j.engstruct.2017.11.061
  5. Dogangun, A. and Sezen, H. (2012), "Seismic vulnerability and preservation of historical masonry monumental structures", Earthq. Struct., 3(1), 83-95. https://doi.org/10.12989/eas.2012.3.1.083
  6. Drosopoulos, G.A., Stavroulakis, G.E. and Massalas, C.V. (2006), "Limit analysis of a single span masonry bridge with unilateral frictional contact interfaces", Eng. Struct., 28(13), 1864-1873. https://doi.org/10.1016/j.engstruct.2006.03.016
  7. Facci, P., Podesta, S. and Saetta, A. (2011), Venezia, Campanile della Chiesa di Sant'Antonin, Esempio 5, Linee Guida per la Valutazione e Riduzione del Rischio Sismico del Patrimonio culturale Allineate Alle Nuove Norme Tecniche per le Costruzioni (D.M. 14/01/2008).
  8. Guler, K., Yuksel, E. and Kocak, A. (2008), "Estimation of the fundamental vibration period of existing RC buildings in Turkey utilizing ambient vibration records", J. Earthq. Eng., 12(S2), 140-150. https://doi.org/10.1080/13632460802013909
  9. Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environ. Earth Sci., 75(21), 1421. https://doi.org/10.1007/s12665-016-6230-0
  10. Karaton, M., Aksoy, H.S., Sayin, E. and Calayir, Y. (2017), "Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels", Eng. Fail. Analy., 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017
  11. Kocak, A. and Yildirim, M.K. (2011), "Effects of infill wall ratio on the period of reinforced concrete framed buildings", Adv. Struct. Eng., 14(5), 731-743. https://doi.org/10.1260/1369-4332.14.5.731
  12. Kocak, A., Borekci, M. and Zengin, B. (2018), "Period formula for RC frame buildings considering infill wall thickness and elasticity modulus", Scient. Iranic., 25(1), 118-128.
  13. Mele, E., De Luca, A. and Giordano, A. (2003), "Modelling and analysis of a basilica under earthquake loading", J. Cultur. Herit., 4(4), 355-367. https://doi.org/10.1016/j.culher.2003.03.002
  14. NCRS-02 (2002), Norma de Construccion Sismorresistente: Parte General Edification, Real Decreto 997/2002.
  15. NTC2008 (2008), Norme Tecniche per le Costruzioni, D.M. 14/01/2008, Gazzetta Ufficiale n. 29 del 04.02.2008.
  16. Onat, O., Lourenco, P.B. and Kocak, A. (2017), "Structural model calibration of RC structure with two-leaf cavity brick infill wall by deterministic approach", Gradevin., 69(3), 171-181.
  17. Onat, O. and Sayin, E. (2015), Tarihi Tagar Koprusunun Dogrusal Olmayan Sismik Analizi, Tarihi Eserlerin Guclendirilmesi ve Gelecege Guvenle Devredilmesi Sempozyumu, Erzurum, Turkiye.
  18. Ozmen, A. and Sayin, E. (2018). "Seismic assessment of a historical masonry arch bridge", J. Struct. Eng. Appl. Mech., 1(2), 95-104. https://doi.org/10.31462/jseam.2018.01095104
  19. Pela, L., Aprile, A. and Benedetti, A. (2009), "Seismic assessment of masonry arch bridges", Eng. Struct., 31(8), 1777-1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  20. Perez-Gracia, V., Di Capua, D., Caselles, O., Rial, F., Lorenzo, H., Gonzalez-Drigo, R. and Armesto, J. (2011), "Characterization of a romanesque bridge in Galicia (Spain)", Int. J. Architect. Herit., 5(3), 251-263. https://doi.org/10.1080/15583050903560249
  21. Radnic, J., Harapin, A., Smilovic, M., Grgic, N. and Glibic, M. (2012), "Static and dynamic analysis of the old stone bridge in mostar", Gradevin., 64(8), 655-665.
  22. Ranieri, C. and Fabbrocino, G. (2011), "Il periodo elastico delle torri in muratura: Correlazioni empiriche per la previsione", Proceedings of the 14th Conference on Convegno ANIDIS, L'Ingegneria Sismica in Italia, Bari, Italy.
  23. Sayin, E. (2016), "Nonlinear seismic response of a masonry arch bridge", Earthq. Struct., 10(2), 483-494. https://doi.org/10.12989/eas.2016.10.2.483
  24. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011), "Finite element model calibration effects on the earthquake response of masonry arch bridges", Fin. Elem. Analy. Des., 47(7), 621-634. https://doi.org/10.1016/j.finel.2010.12.011
  25. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlin. Dyn., 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y
  26. Shakya, M., Varum, H., Vicente, R. and Costa, A. (2016), "Empirical formulation for estimating the fundamental frequency of slender masonry structures", Int. J. Architect. Herit., 10(1), 55-66. https://doi.org/10.1080/15583058.2014.951796
  27. Spyrakos, C.C. (2018), "Bridging performance based seismic design with restricted interventions on cultural heritage structures", Eng. Struct., 160, 34-43. https://doi.org/10.1016/j.engstruct.2018.01.022
  28. TSC 1998 (1998), Turkish Code for Buildings in Seismic Zones, The Ministry of Public Works and Settlement, Ankara, Turkey.
  29. Ural, A. and Dogangun, A. (2007), "Arch bridges in East Blacksea region of Turkey and effects of infill materials on a sample bridge", Proceedings of the 5th International Conference on Arch Bridges, September, Madeira, Portugal.
  30. Ural, A. (2005), Tarihi Kemer Koprulerin Sonlu Eleman Metoduyla Analizi, Ulusal Deprem Sempozyumu, Kocaeli, Turkey.
  31. Wenzel, F. And Kahle, M. (1993), Indirect Methods of Investigation for Evaluating Historic Masonry, IABSE Reports, Zurich, Swiss.

피인용 문헌

  1. Damage detection using both energy and displacement damage index on the ASCE benchmark problem vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.151
  2. Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge vol.77, pp.3, 2021, https://doi.org/10.12989/sem.2021.77.3.343