DOI QR코드

DOI QR Code

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M. (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2018.09.27
  • Accepted : 2018.11.15
  • Published : 2019.01.25

Abstract

Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Keywords

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/ANR.2018.6.1.039
  2. Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/SCS.2018.26.1.089
  3. Arefi, M., Kiani, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation", J. Sandw. Struct. Mater., 29(5), 774-786.
  4. Arefi, M., Zamani, M.H. and Kiani, M. (2017a), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
  5. Arefi, M. (2016), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech., 227(9), 2529-2542. https://doi.org/10.1007/s00707-016-1584-7
  6. Arefi, M. and Rahimi, G.H. (2011a), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454.
  7. Arefi, M. and Zenkour, A.M. (2017a), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  8. Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
  9. Arefi, M. and Zenkour, A.M. (2017c), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 1099636217697497.
  10. Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
  11. Arefi, M. (2015), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart Struct. Syst., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195
  12. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart Struct. Syst., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081
  13. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  14. Arefi, M. and Rahimi, G.H. (2011b), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  15. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  16. Arefi, M. and Rahimi, G.H. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart Struct. Syst., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
  17. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
  18. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano. Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393
  19. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano. Res., 6(1), 93-112. https://doi.org/10.12989/ANR.2018.6.2.093
  20. Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration-analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., 64(4), 793-802. https://doi.org/10.12989/SEM.2017.64.6.793
  21. Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Meth. Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029
  22. Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
  23. Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
  24. Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122(1-2), 11-26. https://doi.org/10.1016/0045-7825(95)00724-F
  25. Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), "The static responses and displacement control of circular curved beams with piezoelectric actuators", Smart Mater. Struct., 16(4), 1016-1024. https://doi.org/10.1088/0964-1726/16/4/009
  26. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inv. Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
  27. Nguyen, B.H., Nanthakumar, S.S., Zhuang, X., Wriggers, P. and Rabczuk, T. (2018), "Dynamic flexoelectric effect on piezoelectric nanostructures", Eur. J. Mech. A. Sol., 81, 40.
  28. Petyt, M. and Fleischer, C.C. (1971), "Free vibration of a curved beam", J. Sound Vibr., 18(1), 17-30. https://doi.org/10.1016/0022-460X(71)90627-4
  29. Piovan, M.T. and Olmedo Salazar, J.F. (2015), "A 1D model for the dynamic analysis of magneto-electro-elastic beams with curved configuration", Mech. Res. Com., 67, 34-38. https://doi.org/10.1016/j.mechrescom.2015.05.003
  30. Poon, W.Y., Ng, C.F. and Lee, Y.Y. (2002), "Dynamic stability of a curved beam under sinusoidal loading", Proc. Inst. Mech. Eng. Part G: J. Aer. Eng., 216(4), 209-217. https://doi.org/10.1243/09544100260369740
  31. Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels", Acta. Mech., 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
  32. Rahmani, O., Deyhim, S. and Hosseini, S.A.H. (2018), "Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory", Steel Compos. Struct., 27(3), 371-388. https://doi.org/10.12989/SCS.2018.27.3.371
  33. Raveendranath, P., Singh, G. and Pradhan, B. (2000), "Free vibration of arches using a curved beam element based on a coupled polynomial displacement field", Comput. Struct., 78(4), 583-590. https://doi.org/10.1016/S0045-7949(00)00038-9
  34. Shi, Z.F. and Zhang, T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter", Smart Mater. Struct., 17(4), 045018. https://doi.org/10.1088/0964-1726/17/4/045018
  35. Surana, K.S. and Sorem, R.M. (1989), "Geometrically non-linear formulation for three dimensional curved beam elements with large rotations", Int. J. Numer. Meth. Eng., 28(1), 43-73. https://doi.org/10.1002/nme.1620280106
  36. Thai, T.Q., Rabczuk, T. and Zhuang, X. (2017), "A large deformation isogeometric approach for flexoelectricity and soft materials", Comput. Meth. Appl. Mech. Eng., 341, 718-739. https://doi.org/10.1016/j.cma.2018.05.019
  37. Tornabene, F. and Brischetto, S. (2018), "3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells", Thin. Wall. Struct., 129, 94-124. https://doi.org/10.1016/j.tws.2018.03.021
  38. Tornabene, F. and Ceruti, A. (2013), "Free-form laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations: A 2-D GDQ solution for static and free vibration analysis", World J. Mech., 3(1), 1-25. https://doi.org/10.4236/wjm.2013.31001
  39. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem.
  40. Veysi, A., Shabani, R. and Rezazadeh, G. (2017), "Nonlinear vibrations of micro-doubly curved shallow shells based on the modified couple stress theory", Nonlin. Dyn., 87(3), 2051-2065. https://doi.org/10.1007/s11071-016-3175-5
  41. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002
  42. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  43. Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2017), "Precise deflection analysis of laminated piezoelectric curved beam", J. Intel. Mater. Syst. Struct., 27(16), 2179-2198. https://doi.org/10.1177/1045389X15624797

Cited by

  1. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765