References
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/ANR.2018.6.1.039
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/SCS.2018.26.1.089
- Arefi, M., Kiani, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation", J. Sandw. Struct. Mater., 29(5), 774-786.
- Arefi, M., Zamani, M.H. and Kiani, M. (2017a), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
- Arefi, M. (2016), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech., 227(9), 2529-2542. https://doi.org/10.1007/s00707-016-1584-7
- Arefi, M. and Rahimi, G.H. (2011a), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454.
- Arefi, M. and Zenkour, A.M. (2017a), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
- Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
- Arefi, M. and Zenkour, A.M. (2017c), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 1099636217697497.
- Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. (2015), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart Struct. Syst., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195
- Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart Struct. Syst., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
- Arefi, M. and Rahimi, G.H. (2011b), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Arefi, M. and Rahimi, G.H. (2014), "Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell", Smart Struct. Syst., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano. Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano. Res., 6(1), 93-112. https://doi.org/10.12989/ANR.2018.6.2.093
- Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration-analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., 64(4), 793-802. https://doi.org/10.12989/SEM.2017.64.6.793
- Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Meth. Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029
- Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Meth. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
- Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
- Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122(1-2), 11-26. https://doi.org/10.1016/0045-7825(95)00724-F
- Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), "The static responses and displacement control of circular curved beams with piezoelectric actuators", Smart Mater. Struct., 16(4), 1016-1024. https://doi.org/10.1088/0964-1726/16/4/009
- Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inv. Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
- Nguyen, B.H., Nanthakumar, S.S., Zhuang, X., Wriggers, P. and Rabczuk, T. (2018), "Dynamic flexoelectric effect on piezoelectric nanostructures", Eur. J. Mech. A. Sol., 81, 40.
- Petyt, M. and Fleischer, C.C. (1971), "Free vibration of a curved beam", J. Sound Vibr., 18(1), 17-30. https://doi.org/10.1016/0022-460X(71)90627-4
- Piovan, M.T. and Olmedo Salazar, J.F. (2015), "A 1D model for the dynamic analysis of magneto-electro-elastic beams with curved configuration", Mech. Res. Com., 67, 34-38. https://doi.org/10.1016/j.mechrescom.2015.05.003
- Poon, W.Y., Ng, C.F. and Lee, Y.Y. (2002), "Dynamic stability of a curved beam under sinusoidal loading", Proc. Inst. Mech. Eng. Part G: J. Aer. Eng., 216(4), 209-217. https://doi.org/10.1243/09544100260369740
- Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels", Acta. Mech., 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
- Rahmani, O., Deyhim, S. and Hosseini, S.A.H. (2018), "Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory", Steel Compos. Struct., 27(3), 371-388. https://doi.org/10.12989/SCS.2018.27.3.371
- Raveendranath, P., Singh, G. and Pradhan, B. (2000), "Free vibration of arches using a curved beam element based on a coupled polynomial displacement field", Comput. Struct., 78(4), 583-590. https://doi.org/10.1016/S0045-7949(00)00038-9
- Shi, Z.F. and Zhang, T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter", Smart Mater. Struct., 17(4), 045018. https://doi.org/10.1088/0964-1726/17/4/045018
- Surana, K.S. and Sorem, R.M. (1989), "Geometrically non-linear formulation for three dimensional curved beam elements with large rotations", Int. J. Numer. Meth. Eng., 28(1), 43-73. https://doi.org/10.1002/nme.1620280106
- Thai, T.Q., Rabczuk, T. and Zhuang, X. (2017), "A large deformation isogeometric approach for flexoelectricity and soft materials", Comput. Meth. Appl. Mech. Eng., 341, 718-739. https://doi.org/10.1016/j.cma.2018.05.019
- Tornabene, F. and Brischetto, S. (2018), "3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells", Thin. Wall. Struct., 129, 94-124. https://doi.org/10.1016/j.tws.2018.03.021
- Tornabene, F. and Ceruti, A. (2013), "Free-form laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations: A 2-D GDQ solution for static and free vibration analysis", World J. Mech., 3(1), 1-25. https://doi.org/10.4236/wjm.2013.31001
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem.
- Veysi, A., Shabani, R. and Rezazadeh, G. (2017), "Nonlinear vibrations of micro-doubly curved shallow shells based on the modified couple stress theory", Nonlin. Dyn., 87(3), 2051-2065. https://doi.org/10.1007/s11071-016-3175-5
- Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
- Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2017), "Precise deflection analysis of laminated piezoelectric curved beam", J. Intel. Mater. Syst. Struct., 27(16), 2179-2198. https://doi.org/10.1177/1045389X15624797
Cited by
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765