DOI QR코드

DOI QR Code

Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core

  • Mohammadia, M. (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Rastgoo, A. (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • 투고 : 2018.06.21
  • 심사 : 2018.10.03
  • 발행 : 2019.01.25

초록

In this study, the nonlinear vibration analysis of the composite nanoplate is studied. The composite nanoplate is fabricated by the functional graded (FG) core and lipid face sheets. The material properties in the FG core vary in three directions. The Kelvin-Voigt model is used to study the viscoelastic effect of the lipid layers. By using the Von-Karman assumptions, the nonlinear differential equation of the vibration analysis of the composite nanoplate is obtained. The foundation of the system is modeled by the nonlinear Pasternak foundation. The Bubnov-Galerkin method and the multiple scale method are used to solve the nonlinear differential equation of the composite nanoplate. The free and force vibration analysis of the composite nanoplate are studied. A comparison between the presented results and the reported results is done and good achievement is obtained. The reported results are verified by the results which are obtained by the Runge-Kutta method. The effects of different parameters on the nonlinear vibration frequencies, the primary, the super harmonic and subharmonic resonance cases are investigated. This work will be useful to design the nanosensors with high biocompatibility.

키워드

참고문헌

  1. Ajri, M. and Fakhrabadi, M.M.S. (2018), "Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory", J. Comput. Appl. Mech., 49(1).
  2. Ashofteh, A., Mashhadi, M.M. and Amadeh, A. (2018), "Effect of nano-structuration and compounding of YSZ APS TBCs with different thickness on coating performance in thermal shock conditions", J. Comput. Appl. Mech., 49(1), 18-26.
  3. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
  4. Bogdanski, D., Koller, M., Muller, D., Muhr, G., Bram, M., Buchkremer, H.P., Stover, D., Choi, J. and Epple, M. (2002), "Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material", Biomater., 23(23), 4549-4555. https://doi.org/10.1016/S0142-9612(02)00200-4
  5. Ebrahimi, F. and Barati, M.R. (2016), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
  6. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5
  7. Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Sign. Proc., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021
  8. Ebrahimi, F. and Barati, M.R. (2017), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
  9. Ebrahimi, F. and Barati, M.R. (2017), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
  10. Ebrahimi, F. and Barati, M.R. (2018), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct. Eng. Mech., 66(3), 369-377. https://doi.org/10.12989/SEM.2018.66.3.369
  11. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25(4), 350-359. https://doi.org/10.1080/15376494.2016.1255830
  12. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 24(3), 549-564. https://doi.org/10.1177/1077546316646239
  13. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  14. Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Expr., 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
  15. Ebrahimi, F. and Dabbagh, A. (2017), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  16. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
  17. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccan., 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  18. Ebrahimi, F. and Heidari, E. (2017), "Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory", Mech. Adv. Mater. Struct., 1-29.
  19. Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  20. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016.
  21. Ebrahimi, F. and Jafari, A. (2018), "A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820
  22. Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
  23. Ebrahimi, F. and Salari, E. (2015), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci, 105(2), 151-181.
  24. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  25. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  26. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  27. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut., 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
  28. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  29. Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
  30. Fischer, L., Wright, V., Guthy, C., Yang, N., McDermott, M., Buriak, J. and Evoy, S. (2008), "Specific detection of proteins using nanomechanical resonators", Sens. Actuat. B: Chem., 134(2), 613-617. https://doi.org/10.1016/j.snb.2008.06.003
  31. Fu, Y., Du, H., Huang, W., Zhang, S. and Hu, M. (2004), "TiNi-based thin films in MEMS applications: A review", Sens. Actuat. A: Phys., 112(2-3), 395-408. https://doi.org/10.1016/j.sna.2004.02.019
  32. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
  33. Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/SCS.2018.26.6.663
  34. Hosseini-Hashemi, S. and Khaniki, H.B. (2018), "Three dimensional dynamic response of functionally graded nanoplates under a moving load", Struct. Eng. Mech., 66(2), 249-262. https://doi.org/10.12989/SEM.2018.66.2.249
  35. Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Comput. Appl. Mech., 49(1), 197-211.
  36. Hwang, K.S., Lee, J.H., Park, J., Yoon, D.S., Park, J.H. and Kim, T.S. (2004), "In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever", Lab Chip, 4(6), 547-552. https://doi.org/10.1039/b410905h
  37. Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S. and Craighead, H. (2005), "Enumeration of DNA molecules bound to a nanomechanical oscillator", Nano Lett., 5(5), 925-929. https://doi.org/10.1021/nl050456k
  38. Ilic, B., Yang, Y. and Craighead, H. (2004), "Virus detection using nanoelectromechanical devices", Appl. Phys. Lett., 85(13), 2604-2606. https://doi.org/10.1063/1.1794378
  39. Lima, L.M., Fu, W., Jiang, L., Kros, A. and Schneider, G.F. (2016), "Graphene-stabilized lipid monolayer heterostructures: A novel biomembrane superstructure", Nanosc, 8(44), 18646-18653. https://doi.org/10.1039/C6NR05706C
  40. Liu, L., Yang, C., Zhao, K., Li, J. and Wu, H.C. (2013), "Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor", Nat. Commun., 4, 2989. https://doi.org/10.1038/ncomms3989
  41. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/SEM.2017.63.2.161
  42. Nejad, M.Z., Hadi, A., Rastgoo, A. and Omidvari, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/SEM.2018.67.4.417
  43. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  44. She, G.L., Shu, X. and Ren, Y.R. (2017), "Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory", J. Therm. Stress., 40(6), 783-797. https://doi.org/10.1080/01495739.2016.1261009
  45. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010
  46. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
  47. She, G.L., Yuan, F.G. and Ren, Y.R. (2018), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002
  48. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063
  49. She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
  50. Sioh, E.L. (2010), "Functional graded material with nano-structured coating for protection", Int. J. Mater. Prod. Technol., 39(1-2), 136-147. https://doi.org/10.1504/IJMPT.2010.034266
  51. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. For.
  52. Zamani Nejad, M., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370.
  53. Zhou, X., Moran-Mirabal, J.M., Craighead, H.G. and McEuen, P.L. (2007), "Supported lipid bilayer/carbon nanotube hybrids", Nat. Nanotechnol., 2, 185. https://doi.org/10.1038/nnano.2007.34