References
- Baltazar, A., Wang, L., Xie, B. and Rokhlin, S.I. (2003), "Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids", J. Acoust. Soc. Am., 114(3), 1424-1434. https://doi.org/10.1121/1.1600723
- Bleustein, J.L. (1968). "A new surface wave in piezoelectric materials", Appl. Phys. Lett., 13(12), 412-413. https://doi.org/10.1063/1.1652495
- Chaudhary, S., Sahu, S.A. and Singhal, A. (2018), "On secular equation of SH waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface", J. Intell. Mater. Syst. Struct., 29(10), 2223-2235. https://doi.org/10.1177/1045389X18758192
- Chen, W.Q., Cai, J.B., Ye, G.R. and Wang, Y.F. (2004), "Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer", Int. J. Sol. Struct., 41(18-19), 5247-5263. https://doi.org/10.1016/j.ijsolstr.2004.03.010
- Chen, Z.G., Hu, Y.T. and Yang, J.S. (2008), "Shear horizontal piezoelectric waves in a piezoceramic plate imperfectly bonded to two piezoceramic half-spaces", J. Mech., 24(3), 229-239. https://doi.org/10.1017/S172771910000229X
- Curtis, R.G. and Redwood, M. (1973), "Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness", J. Appl. Phys., 44(5), 2002-2007. https://doi.org/10.1063/1.1662506
- El-Karamany, A.S. and Ezzat, M.A. (2005), "Propagation of discontinuities in thermopiezoelectric rod", J. Therm. Stress., 28(10), 997-1030. https://doi.org/10.1080/01495730590964954
- El-Karamany, A.S. and Ezzat, M.A. (2009), "Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times", Mech. Time-Depend. Mater., 13(1), 93-115. https://doi.org/10.1007/s11043-008-9068-3
- El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phase-lag linear micropolar thermoelasticity theory", Eur. J. Mech. A/Sol., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-923.
- Eringen, A.C. (1999), Microcontinuum Field Theories-I, Springer- Verlag, New York, U.S.A.
- Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solid-I", Int. J. Eng. Sci., 2(2), 189-203. https://doi.org/10.1016/0020-7225(64)90004-7
- Ezzat, M.A., El-Karamany, A.S. and Awad, E.S. (2010), "On the coupled theory of thermo-piezoelectric/piezomagnetic materials with two temperatures", Can. J. Phys., 88(5), 307-315. https://doi.org/10.1139/P10-015
- Ezzat, M.A., Hamza, F. and Awad, E.S. (2010), "Electro-magneto-thermoelastic plane waves in micropolar solid involving two temperatures", Acta. Mech. Sol. Sin., 23(3), 200-212. https://doi.org/10.1016/S0894-9166(10)60022-5
- Ezzat, M.A. and Awad, E.S. (2010), "Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures", J. Therm. Stress., 33(3), 226-250. https://doi.org/10.1080/01495730903542829
- Gauthier, R.D. (1982), Experimental Investigation on Micropolar Media, Mechanics of Micropolar Media, World Scientific, Singapore.
- Jin, F., Wang, Z. and Kishimoto, K. (2011), "The propagation behavior of Bleustein-Gulyaev waves in a pre-stressed piezoelectric layered structure", Int. J. Nonlin. Sci. Num. Sim. 4(2), 125-138. https://doi.org/10.1515/IJNSNS.2003.4.2.125
- Kaur, T., Sharma, S.K. and Singh, A.K. (2017), "Shear wave propagation in vertically heterogeneous viscoelastic layer over a micropolar elastic half-space", Mech. Adv. Mater. Struct., 24(2), 149-156. https://doi.org/10.1080/15376494.2015.1124948
- Kumar, R. and Partap, G. (2006), "Rayleigh lamb waves in micropolar isotropic elastic plate", Appl. Math. Mech., 27(8), 1049-1059. https://doi.org/10.1007/s10483-006-0805-z
- Kumar, R. and Deswal, S. (2006), "Some problems of wave propagation in a micropolar elastic medium with voids", J. Vibr. Contr., 12(8), 849-879. https://doi.org/10.1177/1077546306065856
- Kumar, R., Kaur, M. and Rajvanshi, S.C. (2014), "Propagation of waves in micropolar generalized thermoelastic materials with two temperatures bordered with layers or half-spaces of inviscid liquid", Lat. Am. J. Sol. Struct., 2(7), 1091-113.
- Kundu, S., Kumari, A., Pandit, D.K. and Gupta, S. (2017), "Love wave propagation in heterogeneous micropolar media", Mech. Res. Commun., 83, 6-11. https://doi.org/10.1016/j.mechrescom.2017.02.003
- Kurt, I., Akbarov, S.D. and Sezer, S. (2016), "The influence of the initial stresses on lamb wave dispersion in pre-stressed PZT/metal/PZT sandwich plates", Struct. Eng. Mech., 58(2), 347-378. https://doi.org/10.12989/sem.2016.58.2.347
- Liu, J. and Wang, Z.K. (2005), "The propagation behavior of Love waves in a functionally graded layered piezoelectric structure", Smart Mater. Struct., 14(1), 137-146. https://doi.org/10.1088/0964-1726/14/1/013
- Liu, J., Cao, X.S. and Wang, Z.K. (2008), "Love waves in a smart functionally graded piezoelectric composite structure", Acta Mech., 208(1-2), 63-80. https://doi.org/10.1007/s00707-008-0124-5
- Liu, J., Wang, Y. and Wang, B. (2010), "Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface", IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 57(8), 1875-1879. https://doi.org/10.1109/TUFFC.2010.1627
- Love, A.E.H. (1920), Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, U.K.
- Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Probl. Eng.
- Marin, M. (2016), "An approach of a heat-flux dependent theory for micropolar porous media", Meccan., 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Bound. Value Probl., 2016(1), 111. https://doi.org/10.1186/s13661-016-0620-9
- Marin, M. and Ochsner F. (2018), "An initial boundary value problem for modeling a piezoelectric dipolar body", Contin. Mech. Thermodyn., 30(2), 267-278. https://doi.org/10.1007/s00161-017-0599-1
- Midya, G.K. (2004), "On love-type surface waves in homogeneous micropolar elastic media", Int. J. Eng. Sci., 42(11-12), 1275-1288. https://doi.org/10.1016/j.ijengsci.2004.03.002
- Mindlin, R.D. (1952), "Forced thickness-shear and flexural vibrations of piezoelectric", J. Appl. Phys., 23(1), 83-88. https://doi.org/10.1063/1.1701983
- Qian, Z.H., Jin, F. and Hirose, S. (2011), "Dispersion characteristics of transverse surface waves in piezoelectric coupled solid media with hard metal interlayer", Ultrason., 51(8), 853-856. https://doi.org/10.1016/j.ultras.2011.06.005
- Qian, Z.H., Jin, F., Lu, T.J. and Kishimoto, K. (2009). "Transverse surface waves in a 6 mm piezoelectric material carrying a prestressed metal layer of finite thickness", Appl. Phys. Lett., 94(9), 093513. https://doi.org/10.1063/1.3095922
- Qian, Z.H., Jin, F., Wang, Z and Kishimoto, K. (2004), "Dispersion relations for SH-wave propagation in periodic piezoelectric composite", Int. J. Eng. Sci., 2(7), 673-689.
- Qian, Z.H., Jin, F., Wang, Z. and Kishimoto, K. (2004), "Love waves propagation in a piezoelectric layered structure with initial stresses", Acta Mech., 171(1-2), 41-57. https://doi.org/10.1007/s00707-004-0128-8
- Singh, A.K., Chaki, M.S., Hazra, B. and Mahto S. (2017), "Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure", Struct. Eng. Mech., 62(3), 325-344. https://doi.org/10.12989/sem.2017.62.3.325
- Singh, B. and Kumar, R. (1998), "Reflection and refraction of plane waves at an interface between micropolar elastic solid and viscoelastic solid", Int. J. Eng. Sci., 36(2), 119-135. https://doi.org/10.1016/S0020-7225(97)00041-4
- Son, M.S. and Kang, J. (2011), "The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates", Ultrason., 51(4), 489-495. https://doi.org/10.1016/j.ultras.2010.11.016
- Tiersten, H.F. (1963), "Thickness vibrations of piezoelectric plates", J. Acoust. Soc. Am., 35(1), 53-58. https://doi.org/10.1121/1.1918413
- Voigt, W. (1887), "Theoretischestudienuber die elastizitatsverhaltnisse der krystalleabhandl", d. Ges. d. Wiss. zuGottingen, 34, 3-51.
- Wang, Q., Quek, S.T. and Varadan, V.K. (2001), "Love waves in piezoelectric coupled solid media", Smart Mater. Struct., 10(2), 380-388. https://doi.org/10.1088/0964-1726/10/2/325
- Wang, H.M. and Zhao, Z.C. (2013), "Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface", Arch. Appl. Mech., 83(1), 43-51. https://doi.org/10.1007/s00419-012-0631-7