DOI QR코드

DOI QR Code

와이코인 : 블록체인 기술을 이용한 무선랜 공유

WiCoin : Wireless LAN Sharing Using Block Chain Technology

  • 김우성 (가천대학교 컴퓨터공학과) ;
  • 류경호 (가천대학교 컴퓨터공학과) ;
  • 박양재 (가천대학교 컴퓨터공학과)
  • 투고 : 2018.10.23
  • 심사 : 2019.01.20
  • 발행 : 2019.01.28

초록

본 논문은 무선랜 공유를 위한 블록체인 시스템 적용 방안을 제안한다. 무선랜은 비인가 대역에서 동작하는 무료 무선 액세스 기술로 현재 폭발적으로 증가하는 무선랜 장치들로 인해 상호 간섭이 가중되고 있다. 또한 무선랜 액세스 장치가 공유되지 않아 개인이나 단체가 무분별하게 무선랜 설치를 하고 있는 것이 큰 문제이다. 최근 블록체인 기술은 이러한 상호 비협력적 시장에서 암호 화폐를 통해 효율적인 협력을 이끌어 낼 수 있음을 보여 주었다. 본 논문에서는 개별 인증기반의 무선랜 접속 방식에서 블록체인 암호 화폐에 기반한 접속 방식을 제안한다. 제안한 시스템에서는 스마트 컨트랙트를 이용하여 웹에서의 사용자 접근이 용이하게 하였으며, 실시간 무선랜 접속을 위해 기존 작업 증명 대신 권한 증명을 구현하였다.

This paper proposes a blockchain system to share Wireless Local Area Network (WLAN) that recently suffers from mutual interference among increasing devices using unlicensed bands. Blockchain technology can induce cooperation from users by incentivizing them with cryptocurrency like shown in Bitcoin example. In this paper, we describe Blockchain based access mechanism in WLAN instead of conventional authentication based access. Here, users can access any WLAN access point by paying through smart contract while they also receive payment from others. In order to support real-time transaction, we apply proof-of-authority that is realized by Byzantine fault tolerant protocol instead of well-known proof-of-work that requires huge computing power and delay.

키워드

DJTJBT_2019_v17n1_195_f0001.png 이미지

Fig. 1. WLAN authentication with block-chain

DJTJBT_2019_v17n1_195_f0002.png 이미지

Fig. 2. WLAN authentication procedure with block-chain

DJTJBT_2019_v17n1_195_f0003.png 이미지

Fig. 3. System Configuration

DJTJBT_2019_v17n1_195_f0004.png 이미지

Fig. 4. smart contract content

Table 1. AP account information at BAS

DJTJBT_2019_v17n1_195_t0001.png 이미지

참고문헌

  1. K. Ritzberger. (2002). Foundations of non-cooperative game theory. OUP Catalogue.
  2. S. Nakamoto. (2008). Bitcoin: A peer-to-peer electronic cash system.
  3. M. Swan. (2015). Blockchain: Blueprint for a new economy. O'Reilly Media, Inc.
  4. M. Vukolic. (2015, October). The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In International Workshop on Open Problems in Network Security (pp. 112-125). Springer, Cham.
  5. N. McKeown. (2009). Software-defined networking. INFOCOM keynote talk , 17(2), 30-32.
  6. S. Kieran. (2018). Vitalik - Ethereum en route to a million transactions per second. (Online). https://bravenewcoin.com/insights/vitalik-ethereum-en-route-to-a-million-transactions-per-second
  7. I. C. Lin & T. C. Liao. (2017). A Survey of Blockchain Security Issues and Challenges. IJ Network Security, 19(5), 653-659.
  8. P. Jayachandran. (2017). The difference between public and private blockchain. (Online). https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain
  9. S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri & V. Sassone. (2018). PBFT vs proof-of-authority: applying the CAP theorem to permissioned blockchain.
  10. A. Raniwala & T. C. Chiueh. (2005, March). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE (Vol. 3, pp. 2223-2234). IEEE.
  11. B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson & H. Levkowetz. (2004). Extensible authentication protocol (EAP) (No. RFC 3748).
  12. J. Hill. (2001). An analysis of the RADIUS authentication protocol. InfoGard Laboratories.
  13. G. N. Purdy. (2004). Linux iptables Pocket Reference: Firewalls, NAT &Accounting . " O'Reilly Media, Inc.".
  14. V. Buterin. (2014). A next-generation smart contract and decentralized application platform. white paper.
  15. C. Collin. (2016). Using puppeth To Manually Create An Ethereum Proof Of Authority (Clique) Network On AWS. (Online). https://medium.com/@collin.cusce/using-puppeth-to-manually-create-an-ethereum-proof-of-authority-clique-network-on-aws-ae0d7c906cce