DOI QR코드

DOI QR Code

An exploratory study on consumers' responses to mobile payment service focused on Samsung Pay

텍스트 마이닝 기법을 이용한 모바일 간편결제 서비스에 대한 소비자 반응 분석: 삼성페이를 중심으로

  • Jung, Minji (Department of Consumer and Family Science, SungKyunKwan University) ;
  • Lee, Yu Lim (Department of Consumer and Family Science, SungKyunKwan University) ;
  • Yoo, Chae Min (Department of Consumer and Family Science, SungKyunKwan University) ;
  • Kim, Ji Won (Department of Consumer and Family Science, SungKyunKwan University) ;
  • Chung, Jae-Eun (Department of Consumer and Family Science, SungKyunKwan University)
  • 정민지 (성균관대학교 소비자가족학과) ;
  • 이유림 (성균관대학교 소비자가족학과) ;
  • 유채민 (성균관대학교 소비자가족학과) ;
  • 김지원 (성균관대학교 소비자가족학과) ;
  • 정재은 (성균관대학교 소비자가족학과)
  • Received : 2018.09.05
  • Accepted : 2019.01.20
  • Published : 2019.01.28

Abstract

The purpose of this study is to examine consumers' responses to mobile payment services by using a text-mining technique focusing on Samsung Pay as it is used in both online and offline transactions. We conducted text frequency analysis, text clustering analysis, and text network analysis using R programming. The major findings are as follows. First, the most frequently used key words referenced the brand names of the mobile devices, the replacement of traditional wallets and unique functions of Samsung Pay. Second, there was a clear split between positive and negative responses at the macro level. Third, replacement of traditional wallets played a great role in the positive responses and continuous use of mobile payment services. This study provides in-depth understanding of consumer responses toward mobile payment services. It also offers practical implications that may help mobile payment marketers correspond to consumer values and expectations, thus increasing consumer satisfaction.

본 연구는 모바일 간편결제 서비스에 대한 소비자 반응을 살펴보고 그 반응이 서로 어떤 연관이 있는지 파악하고자 하였다. 이를 위해 대표적인 모바일 간편결제 서비스인 삼성페이를 사용한 경험에 대해 언급한 데이터를 수집하고, R을 이용하여 텍스트 빈도분석, 텍스트 군집분석 그리고 텍스트 네트워크 분석을 실시하였다. 본 연구의 주요 결과는 다음과 같다. 첫째, 빈도분석 결과 삼성페이의 기능과 삼성페이가 지갑을 대체할 수 있는 지에 대한 관심이 높은 것으로 드러났다. 둘째, 군집분석 결과 크게 긍정과 부정 반응으로 분류되었으며 5가지 긍정반응 군집과 4가지의 부정반응 군집이 도출되었다. 셋째, 삼성페이에 대한 지갑 대체 가능 여부는 복수의 반응을 하나의 메시지로 묶어주며, 삼성페이에 대한 지속적인 이용의도와 높은 관련성을 지니는 요인임이 밝혀졌다. 본 연구를 통해 소비자 측면에서 삼성페이에 대한 이해를 높이고, 소비자의 가치와 기대에 부응하여 궁극적으로 높은 만족을 이끌어낼 수 있는 서비스를 제공하는데 도움이 될 것으로 기대된다.

Keywords

DJTJBT_2019_v17n1_9_f0001.png 이미지

Fig. 1. Process of Text mining

DJTJBT_2019_v17n1_9_f0002.png 이미지

Fig. 2. Dendrogram of Hierarchical Clustering

DJTJBT_2019_v17n1_9_f0003.png 이미지

Fig. 3. Results of Text Network Analysis

Table 1. Frequency of Key Words1)

DJTJBT_2019_v17n1_9_t0001.png 이미지

Table 2. Frequency of Meaningful Unit Words

DJTJBT_2019_v17n1_9_t0002.png 이미지

Table 3. Results of Hierarchical Clustering and Categorization

DJTJBT_2019_v17n1_9_t0003.png 이미지

Table 4. Results of Text Network Analysis

DJTJBT_2019_v17n1_9_t0004.png 이미지

References

  1. DMC Media. (2016). The Present Situation and Prospects of Mobile Easy Payment Service Market. DMC Report.
  2. D. H. Kim. (2018). Payco.KakaoPay, Conflict in Offline Easy Payment Market - Announcement of Competitions to Expand a Member's Store. News Tomato. http://www.newstomato.com/ReadNews.aspx?no=830368
  3. A. Y. Choi. (2014). A Study on Utility & Disutility in Consumers' Smart-tech Experience. Doctoral Dissertation, Seoul National University.
  4. J. An, S. Lee, E. An & H. Kim. (2016). Fintech Trends and Mobile Payment Service Analysis in Korea: Application of Text Mining Techniques, Information Policy, 23(3), 26-42.
  5. S. H. Kang & H. K. Kim. (2016). A Study on the User's Acceptance and Use of Easy Payment Service - Focused on the Moderating Effect of Innovation Resistance, Daehan Academy of Management Information Systems, 35(2), 167-183. DOI: 10.29214/damis.2016.35.2.010
  6. T. Kang & S. Zhuang. (2016). A Study on the Consumer Acceptance of International Easy Payment Service - Focusing on Chinese People Purchasing Korean Products. Asia-Pacific Journal of Business & Commerce, 8(3), 59-80.
  7. C. H. Go & E. K. Han. (2016). Mobile Simple Payment Attributes and Intention to Use: Focused on Non-users, Journal of Korean Society of Hazard Mitigation, 16(2), 191-196. DOI: https://doi.org/10.9798/kosham.2016.16.2.191
  8. N. Arvidsson. (2014). Consumer Attitudes on Mobile Payment Services - Results from A Proof of Concept Test. International Journal of Band Marketing, 32(2), 150-170. DOI: https://doi.org/10.1108/ijbm-05-2013-0048
  9. H. J. Kim & J. H. Kim. (2017). A Study on Consumer Value Perception through Social Big Data Analysis: Focus on Smartphone Brands, The Journal of Society for e-Business Studies, 22(1), 123-146. DOI: https://doi.org/10.7838/jsebs.2017.22.1.123
  10. J. M. Lee & J. Y. Rha. (2012). Consumers' Channel Choice and Channel Positioning in Multichannel Environment, Journal of Consumer Policy Studies, 41, 143-169. DOI: https://doi.org/10.15723/jcps..41.201204.143
  11. S. J. Kim & C. B. Kim. (2017). A Study on the Factors Related to the Intention of the Usage of Easy Payment Services Considering Moderating Effect of Regulatory Focus, Journal of Business Research, 32(2), 1-26. https://doi.org/10.1016/0148-2963(94)00003-W
  12. J. H. Han, S. H. Jae, B. H. Kim & J. S. Park. (2015). Effects of Consumer Trust and Perceived Usefulness on Mobile Payments and Online Shopping Website Loyalty, Journal of Digital Convergence, 13(12), 75-87. DOI: http://dx.doi.org/10.14400/JDC.2015.13.12.75
  13. S. A. Oh & J. H. Park (2016). Easy Payment Services need to expand Affiliated Stores and Additional Services. Korea Consumer Agency. http://www.kca.go.kr/brd/m_32/view.do?seq=2092&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=20
  14. M. S. KIm. (2018). 'Monthly Turnover Exceeds 1 Trillion Won' Kakao Pay is Shaking the Quarterfinals. Market. Seoul News. http://www.seoul.co.kr/news/newsView.php?id=20180403020014
  15. M. B. Holbrook & E. C. Hirschman. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(2), 132-140. DOI: https://doi.org/10.1086/208906
  16. P. Desmet & P. Hekkert. (2007). Framework of Product Experience, International Journal of Design, 1(1), 57-66.
  17. B. Schumitt. (1999). Experiential Marketing, Journal of Marketing Management, 15(1-3), 53-67. DOI: https://doi.org/10.1362/026725799784870496
  18. R. P. Bagozzi. (1986). Attitude Formation Under the Theory of Reasoned Action and a Purposeful Behaviour Reformulation. British Journal of Social Psychology, 25(2), 95-107. DOI: https://doi.org/10.1111/j.2044-8309.1986.tb00708.x
  19. H. J. Kim & J. Y. Rha. (2016). Application of the Stimulus-Organism-Response Model on Consumer's Continued Intention to Use Mobile Payment Services: Multiple Mediation Model, Journal of Korean Home Management Association, 34(3), 139-156. DOI: https://doi.org/10.7466/jkhma.2016.34.4.139
  20. J. Hwang & H. Yu. (2016). A Study on Factors Affecting and Intention to Use a Mobile Easy Payment Service: An Integrated Extension of TAM with Perceived Risk, Journal of Information Technology and Architecture, 13(2), 291-306.
  21. T. E. Zhang & J. H. Lee. (2016) A Study on the Use Intention of Easy Mobile Payment Services, The e-Business Studies, 17(6), 203-218. DOI: https://doi.org/10.20462/tebs.2016.12.17.6.203
  22. Y. J. Choi & H. C. Kim. (2016). An Empirical Analysis of the Factors Influencing Intention to Use Mobile Easy Payment Service Applying MPTAM(Mobile Payments Technology Acceptance Model) of University Students, Journal of Financial Consumers, 6(1), 109-133.
  23. H. J. Yoo. (2009). Consumer Satisfaction Model for Digital Convergence Products, Journal of Korean Home Management Association, 27(5), 25-42.
  24. S. Alsop. (1999). Have I Told You Lately That I Hate Windows? Fortune, 140(1), 177-178.
  25. W. S. Mossberg. (1999). AT&T's One-Rate Plan Falls Short of Promise for Broad, Easy Use. Wall Street Journal, 8(July), B1, https://www.wsj.com/articles/SB931383803177249362
  26. A. Parasuraman. (2000). Technology Readiness Index: A Multiple-Item Scale to Measure Readiness to Embrace New Technology. Journal of Service Research, 2(4), 307-332. https://doi.org/10.1177/109467050024001
  27. S. J. Oh & C. H. K. KIm. (2016). Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media, Catoon & Animation Studies, 44, 285-306. DOI: https://doi.org/10.7230/koscas.2016.44.285
  28. J. S. Hong & I. K. Oh (2016). Image Difference of Before and After an Incident Using Social Big Data Analysis, International Journal of Tourism and Hospitality Research, 30(6), 119-133. DOI: https://doi.org/10.21298/ijthr.2016.06.30.6.119
  29. K. H. Kim & S. R. Oh. (2009). Methodology for Applying Text Mining Techniques to Analyzing Online Customer Reviews for Market Segmentation, Journal of The Korea Contents Association, 9(8), 272-284. DOI: https://doi.org/10.5392/jkca.2009.9.8.272
  30. S. W. Cho. (2011). Technology in Big Data Age. KT General Technology Institute, 5-7.
  31. D. Paranyushkin. (2011). Identifying the Pathways for Meaning Circulation Using Text Network Analysis. Berlin: Nodus Labs. http://noduslabs.com/research/pathwaysmeaning-circulation-text-network-analysis.
  32. J. M. Lee & J. Y. Rha. (2015). Exploring Consumer Responses to the Cross-Border E-Commerce using Text Mining, Journal of Consumer Studies, 26(5), 93-124.
  33. W. Fan, L. Wallage, S. Rich & Z. Zhang. (2006). Tapping the Power of Text Mining. Communications of ACM, 49(9), 76-82. DOI: https://doi.org/10.1145/1151030.1151032
  34. H. S. Kong & E. J. Song. (2014). A Study on Hotel Customer Reputation Analysis based on Big Data, Journal of Digital Contents Society, 15(2), 219-225. DOI: https://doi.org/10.9728/dcs.2014.15.2.219
  35. H. S. Kong, E. J. Song & M. S. Kang. (2015). A Study on the Evaluation of Travel Agency using Social Big Data. Journal of the Korea Institute of Information and Communication Engineering, 19(10), 2241-2246. DOI: https://doi.org/10.6109/jkiice.2015.19.10.2241
  36. Y. I. Yoon & D. H. Ha. (2017). How Business Hotel is Perceived with Big Data Analytics of Social Media, Korea Association of Business of Business Education, 32(3), 379-398. DOI: https://doi.org/10.23839/kabe.2017.32.3.379
  37. H. J. Jung & K. W. Oh. (2016). Devote to the Welfare of Human Beings: Types, Motives, and Emotions of Ethical Consumption as Revealed by Social Big Data, The Korean Journal of Consumer and Advertising Psychology, 17(4), 875-893. DOI: https://doi.org/10.21074/kjlcap.2016.17.4.875
  38. S. J. Han & J. H. Yoon. (2016). Activation Strategies of the 20th BIFF using Social Big Data Text Mining Analysis, Journal of Tourism Sciences, 40(1), 133-145. DOI: https://doi.org/10.17086/jts.2015.39.10.133.145
  39. E. Lim, G. Kim, E. Oh & S. Joung. (2016). An Exploratory Study on Sustainability & Packaging - Centered on Transition on Sustainable Packaging. Journal of Consumer Studies, 27(5), 197-219.
  40. J. S. Hwang. (2016). Do Self-esteem, Personality and Offline Activities Help to Distinguish Online Community Users from Social Networking Site Users? International Telecommunications Policy Review, 23(3), 75-110.
  41. D. M. Boyd & N. B. Ellison. (2007). Social Network Sites: Definition, History, and Scholarship. Journal of computer-mediated Communication, 13(1), 210-230. DOI: https://doi.org/10.1109/emr.2010.5559139
  42. C. T. Carr & R. A. Hayes. (2015). Social Media: Defining, Developing, and Divining. Atlantic Journal of Communication, 23(1), 46-65. DOI: https://doi.org/10.1080/15456870.2015.972282
  43. B. S. Kim, M. H. Shin, D. K. Lim & I. H. Lee. (2013). Motivation and Types of Social media Users in Their Social Network Activities. Social Science Research Review, 29(2), 105-134.
  44. A. M. Kaplan & M. Haenlein. (2010). Users of the World, Unite! The Challenges and Opportunities of Social Media. Business Horizons, 53(1), 59-68. DOI: https://doi.org/10.1016/j.bushor.2009.09.003
  45. U. M. Fayyd, G. P. Shapiro & P. Smyth. (1996). From Data Mining to Knowledge Discovery: An Overview. MIT Press/AAAI Press, 1-36.
  46. W. Kang, E. Ko, H. Lee & J. Kim. (2018). A Study on the Consumer Major Perception of Packaging Using Big Data Analysis-Focusing on Text Mining and Semantic Network Analysis. Journal of the Korea Convergence Society, 9(4), 15-22. DOI: https://doi.org/10.15207/JKCS.2018.9.4.015
  47. N. I. Park & J. Y. Jung. (2011). Who Retweet and Why? : Retweeting Motivation Factors and Socio-demographic Variables' Influence on Retweeting. Journal of Media Economics & Culture, 9(3), 95-132.
  48. N. Li & D. D. Wu. (2010). Using Text Mining and Sentiment Analysis for Online Forums Hotspot Detection and Forecast. Decision Support Systems, 48(2), 354-368. DOI: https://doi.org/10.1016/j.dss.2009.09.003
  49. H. Jeong & B. Park. (2015). Korean Word Sense Disambiguation using Dictionary and Corpus. Jounrnal of Intelligence and Information Systems, 21(1), 1-13. DOI: https://doi.org/10.13088/jiis.2015.21.1.01
  50. Ministry of Education. (2016). Data Analysis Based on Text Mining Techniques. Learning Module for Big Data Analysis-08.
  51. D. Park. (2016). Natural Language Processing of News Articles: A Case of 'NewsSource beta'. Communication Theories, 12(1), 4-52.
  52. H. W. Park & L. Leydesdorff. (2004). Understanding the KrKwic: A Computer Program for the Analysis of Korean Text. Journal of the Korean data Analysis Society, 6(5), 1377-1387.
  53. M. S. Kim & H. Um. (2016). The Study on Recent Research Trend in Korean Tourism Using Keyword Network Analysis, Journal of the Korea Academia-Industrial cooperation Society, 17(9), 68-73. DOI: https://doi.org/10.5762/kais.2016.17.9.68
  54. J. Oh & S. Choi. (2018). An Analysis of the Characteristics of Companies Introducing Smart Factory System Using Data Mining Technique, Journal of the Korea Convergence Society, 9(5), 179-189. DOI: https://doi.org/10.15207/JKCS.2018.9.5.179
  55. L. C. Freeman, D. Roeder & R. R. Mulholland. (1979). Centrality in social networks: II. Experimental results. Social networks, 2(2), 119-141. DOI: https://doi.org/10.1016/0378-8733(79)90002-9
  56. K. Kim & J. Yun. (2015). Comparison and Analysis on Mobile Payment in terms of Security: Survey, Journal of Convergence for Information Technology, 5(3), 15-20. https://doi.org/10.22156/CS4SMB.2015.5.3.015
  57. K. Kim, G. Jeon & G. Chae. (2015). NFC Payment System Model for Security Privacy and Location Information of User, Journal of Convergence for Information Technology, 5(2), 21-26. https://doi.org/10.14801/jaitc.2015.5.1.21
  58. P. G. Schierz, O. Schilke & B. W. Wirtz. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic commerce research and applications, 9(3), 209-216. https://doi.org/10.1016/j.elerap.2009.07.005
  59. S. Yang, Y. Lu, S. Gupta, Y. Cao & R. Zhang. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142. https://doi.org/10.1016/j.chb.2011.08.019
  60. Y. W. Ha & M. C. Park. (2013). Antecedents of customer satisfaction and customer loyalty for emerging devices in the initial market of Korea: An equity framework. Psychology & Marketing, 30(8), 676-689. DOI: https://doi.org/10.1002/mar.20637
  61. H. N. Kim & E. C. Jung. (2017). Comparative Analysis on UX Design Direction of Mobile Payment Service Based on Innovation Acceptance and Adaptation Model from the Cognitive View - Focused on ZooMoney and Samsung Pay. Bulletin of Korean Society of Basic Design & Art, 18(1), 133-144.
  62. N. Mallat. (2007). Exploring Consumer Adoption of Mobile Payments - A Qualitative Study. The Journal of Strategic Information Systems, 16(4), 413-432. DOI: https://doi.org/10.1016/j.jsis.2007.08.001
  63. T. S. Kwon. (2018). Samsung Pay Evolve Again... Second Round of Pay War with UX Reinforcement. Etoday, http://www.etoday.co.kr/news/section/newsview.php?idxno=1661023