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UNIQUENESS OF MEROMORPHIC FUNCTIONS

CONCERNING THE SHIFTS AND DERIVATIVES†
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Abstract. This paper is devoted to studying the sharing value problem

for the derivative of a meromorphic function with its shift and q-difference.

The results in the paper improve and generalize the recent result due to
Qi, Li and Yang [28].
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1. Introduction and main results

By a meromorphic function we shall always mean a meromorphic function in
the complex plane. Let k be a positive integer or infinity and a ∈ C ∪ {∞}.
Set E(a, f) = {z : f(z) − a = 0}, where a zero point with multiplicity k is
counted k times in the set. If these zeros points are only counted once, then
we denote the set by E(a, f). Let f and g be two nonconstant meromorphic
functions. If E(a, f) = E(a, g), then we say that f and g share the value a
CM; if E(a, f) = E(a, g), then we say that f and g share the value a IM. We
denote by Ek)(a, f) the set of all a-points of f with multiplicities not exceeding
k, where an a-point is counted according to its multiplicity. Also we denote by
Ek)(a, f) the set of distinct a-points of f with multiplicities not greater than k.
We denote by Nk)(r, 1/(f − a)) the counting function for zeros of f − a with

multiplicity less than or equal to k, and by Nk)(r, 1/(f − a)) the corresponding
one for which multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting

function for zeros of f − a with multiplicity at least k and N (k(r, 1/(f − a))
the corresponding one for which multiplicity is not counted. It is assumed that
the reader is familiar with the notations of Nevanlinna theory such as T (r, f),
m(r, f), N(r, f), N(r, f), S(r, f) and so on, that can be found, for instance, in
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[14][36].

Around 2001, I Lahiri introduced the notion of weighted sharing, which mea-
sures how close a shared value is to being shared CM or to being shared IM.
The definition is as follows.

Definition 1.1. [16] For a complex number a ∈ C∪{∞}, we denote by Ek(a, f)
the set of all a-points of f where an a-point with mutiplicity m is counted m
times if m ≤ k and k + 1 times if m > k. For a complex number a ∈ C ∪ {∞},
such that Ek(a, f) = Ek(a, g), then we say that f and g share the value a with
weight k.

The definition implies that if f , g share a value a with weight k, then z0 is a
zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and z0 is a zero of f−a with multiplicity m(> k) if and only
if it is a zero of g− a with multiplicity n(> k), where m is not necessarily equal
to n. We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

Mermorphic functions sharing values with their derivatives has become a sub-
ject of great interest in uniqueness theory. The paper by Rubel and Yang is the
starting point of this topic, along with the following.

Theorem 1.2. [30] Let f be a nonconstant entire function. If f and f ′ share
two distinct finite values CM, then f = f ′.

Now one may ask the following question: Can we change the number 2 of
shared values to 1 in the Theorem 1.1 ? The following counterexample from

shows the answer is negative. Let f = ee
z ∫ z

0
e−e

t

(1 − et)dt. Clearly, f and
f ′ share 1 CM but f 6= f ′. In a special case, we recall a well-known conjec-
ture by Brück [4]: Let f be a nonconstant entire function such that hype order
σ2(f) < ∞ and σ2(f) isn’t positive integer. If f and f ′ share the finite value

a CM, then f ′−a
f−a = c, where c is nonzero constant. The conjecture has been

verified in the special cases when a = 0 [4], or when f is of finite order [12],
or when σ2(f) < 1

2 [7]. Many results have been obtained for this and related
topics(See [1],[5],[11],[17],[18],[23]-[27],[31],[32],[34],[35],[37],[39],[41]-[44] and the
references therein).

Heittokangas et al. considered analogues of Brück’s conjecture for meromor-
phic functions concerning their shifts, and proved the following theorem.

Theorem 1.3. [15] Let f be a meromorphic function of order σ(f) < 2 and let
c ∈ C. If f(z) and f(z + c) share the values a ∈ C and ∞ CM, then

f(z + c)− a
f(z)− a

= τ ,
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for some constant τ .

Since then, many mathematicians considered this topic (See [6],[8],[10],[19]-
[22],[29],[38] and the references therein). In 2018, Qi, Li and Yang considered
the value sharing problem related to f ′(z) and f(z + c), where c is a complex
number. They obtained the following result.

Theorem 1.4. [28] Let f(z) be a non-constant meromorphic function of finite
order, n ≥ 9 be an integer. If [f ′(z)]n and fn(z + c) share a( 6= 0) and ∞ CM,
then f ′(z) = tf(z + c), for a constant t that satisfies tn = 1.

It is natural to ask whether the nature of sharing values can be reduced in
Theorem 1.4. Considering this question, we prove the following results.

Theorem 1.5. Let f(z) be a non-constant meromorphic function of finite order,
n ≥ 10 be an integer. If [f ′(z)]n and fn(z + c) share (1, 2) and (∞, 0), then
f ′(z) = tf(z + c), for a constant t that satisfies tn = 1.

Theorem 1.6. Let f(z) be a non-constant meromorphic function of finite order,
n ≥ 9 be an integer. If [f ′(z)]n and fn(z + c) share (1, 2) and (∞,∞), then
f ′(z) = tf(z + c), for a constant t that satisfies tn = 1.

Theorem 1.7. Let f(z) be a non-constant meromorphic function of finite order,
n ≥ 17 be an integer. If [f ′(z)]n and fn(z + c) share (1, 0) and (∞, 0), then
f ′(z) = tf(z + c), for a constant t that satisfies tn = 1.

Corollary 1.8. Let f(z) be a non-constant entire function of finite order, n ≥ 5
be an integer. If [f ′(z)]n and fn(z + c) share (1, 2), then f ′(z) = tf(z + c), for
a constant t that satisfies tn = 1.

Remark 1.1. It’s obvious that the condition that [f ′(z)]n and fn(z + c) share
(1, 2) and (∞,∞) in Theorem 1.6 is weaker than the condition [f ′(z)]n and
fn(z + c) share a(6= 0) and ∞ CM in Theorem 1.4.

If the shifts f(z+c) in Theorem 1.5 and 1.6 are replaced by q-difference f(qz),
we obtain

Theorem 1.9. Let f(z) be a non-constant meromorphic function of zero order,
n ≥ 10 be an integer. If [f ′(z)]n and fn(qz) share (1, 2) and (∞, 0), then f ′(z) =
tf(qz), for a constant t that satisfies tn = 1.

Theorem 1.10. Let f(z) be a non-constant meromorphic function of zero order,
n ≥ 9 be an integer. If [f ′(z)]n and fn(qz) share (1, 2) and (∞,∞), then f ′(z) =
tf(qz), for a constant t that satisfies tn = 1.

Theorem 1.11. Let f(z) be a non-constant meromorphic function of zero order,
n ≥ 17 be an integer. If [f ′(z)]n and fn(qz) share (1, 0) and (∞, 0), then f ′(z) =
tf(qz), for a constant t that satisfies tn = 1.

Corollary 1.12. Let f(z) be a non-constant entire function of zero order, n ≥ 5
be an integer. If [f ′(z)]n and fn(qz) share (1, 2), then f ′(z) = tf(qz), for a
constant t that satisfies tn = 1.
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2. Some Lemmas

In this section, we present some lemmas which will be needed in the sequel.
We will denote by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1. [2] Let F , G be two non-constant meromorphic functions. If F ,
G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞, and H 6≡ 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) ,

where N∗(r,∞;F,G) denotes the reduced counting function of those poles of F
whose multiplicities differ from the multiplicities of the corresponding poles of
G.

Lemma 2.2. [33] Let f be a non-constant meromorphic function, and let a1, a2, ..., an
be finite complex numbers, an 6= 0. Then

T (r, anf
n + · · ·+ a2f

2 + a1f + a0) = nT (r, f) + S(r, f) .

Lemma 2.3. [9] Let f(z) be a finite order meromorphic function, and let c be
a nonzero constant. Then

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(logr) .

Lemma 2.4. [44] Let f be a nonconstant meromorphic function, k be a positive
integer, then

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f) ,

where Np

(
r, 1
f(k)

)
denotes the counting function of the zeros of f (k) where a

zero of multiplicity m is counted m times if m ≤ p and p times if m > p. Clearly

N
(
r, 1
f(k)

)
= N1

(
r, 1
f(k)

)
.

Lemma 2.5. [13] Let f(z) be a meromorphic function of finite order, and let
c ∈ C and δ ∈ (0, 1). Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o

(
T (r, f)

rδ

)
= S(r, f) .

Lemma 2.6. [39] Suppose that two nonconstant meromorphic functions F and
G share 1 and ∞ IM. Let H be given as above. If H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) .
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Lemma 2.7. [40] Let f(z) be a zero-order meromorphic function, and q ∈
C\{0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f(z))

and

N(r, f(qz)) = (1 + o(1))N(r, f(z))

on a set of lower logarithmic density 1.

Lemma 2.8. [3] Let f be a zero-order meromorphic function, and q ∈ C\{0}.
Then

m

(
r,
f(qz)

f(z)

)
= S(r, f)

on a set of logarithmic density 1.

3. Proof of Theorem 1.5

Let

F = fn(z + c), G = [f ′(z)]n . (1)

Then it is easy to verify F and G share (1, 2) and (∞, 0). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.1 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) . (2)

According to Lemma 2.2 and Lemma 2.3, we have

T (r, F ) = nT (r, f(z + c)) + S(r, f) = nT (r, f) + S(r, f) . (3)

It’s obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

f(z + c)

)
≤ 2T (r, f(z + c)) = 2T (r, f) + S(r, f) , (4)

N(r, F ) = N(r, f(z + c)) ≤ T (r, f(z + c)) = T (r, f) + S(r, f) , (5)

N(r,G) = N(r, f) ≤ T (r, f) . (6)

N∗(r,∞;F,G) ≤ N(r, F ) ≤ T (r, f(z + c)) = T (r, f) + S(r, f) . (7)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) . (8)

Combining (2), (3), (4), (5), (6), (7) and (8), we deduce

(n− 9)T (r, f) ≤ S(r, f) , (9)
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which contradicts with n ≥ 10. Therefore H ≡ 0. By integration, we get

1

F − 1
=

A

G− 1
+B , (10)

where A 6= 0 and B are constants. From (10) we have

G =
(B −A)F + (A−B − 1)

BF − (B + 1)
. (11)

We discuss the following three cases.

Case I. Suppose that B 6= 0,−1. From (11), we have

N

(
r,

1

F − B+1
B

)
= N(r,G) . (12)

From the second fundamental theorem and Lemma 2.3, we have

nT (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r.

1

F

)
+N

(
r,

1

F − B+1
B

)
+ S(r, f)

≤ N(r, f(z + c)) +N

(
r,

1

f(z + c)

)
+N(r, f) + S(r, f) , (13)

which contradicts with n ≥ 10.

Case II. Suppose that B = 0. From (11), we have

G = AF − (A− 1) . (14)

If A 6= 1, from (14) we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1

G

)
. (15)

From the second fundamental theorem and Lemma 2.4, we have

nT (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r.

1

F

)
+N

(
r,

1

F − A−1
A

)
+ S(r, f)

≤ N(r, f(z + c)) +N

(
r,

1

f(z + c)

)
+N

(
r,

1

f ′

)
≤ N(r, f(z + c)) +N

(
r,

1

f(z + c)

)
+N2

(
r,

1

f

)
+N(r, f) + S(r, f) , (16)
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which contradicts with n ≥ 10. Thus A = 1. From (14) we have F = G, that is
fn(z + c) = [f ′(z)]n. Hence f ′(z) = tf(z + c), for a constant t with tn = 1.

Case III. Suppose that B = −1. From (11) we have

G =
(A+ 1)F −A

F
. (17)

If A 6= −1, we obtain from (17) that

N

(
r,

1

F − A
A+1

)
= N

(
r,

1

G

)
. (18)

By the same reasoning discussed in Case II, we obtain a contradiction. Hence
A = −1. From (17), we get FG = 1, that is

fn(z + c)[f ′(z)]n = 1 . (19)

Since [f ′(z)]n and fn(z + c) share (∞, 0), from (19) we get

N(r, f ′) = 0, T (r, f ′) = T (r, f(z + c)) + S(r, f) , (20)

and

[f ′(z)]2n =
[f ′(z)]n

fn(z + c)
=

[f ′(z)]n

fn(z)

fn(z+c)
fn(z)

. (21)

From Lemma 2.5 and the logarithmic derivative lemma, we get

m(r, f ′) = S(r, f) . (22)

By (20) and (22), we know that

T (r, f(z + c)) = T (r, f ′) = S(r, f) , (23)

which is a contradiction with Lemma 2.3. The proof of Theorem 1.5 is completed.

4. Proof of Theorem 1.6

Let

F = fn(z + c), G = [f ′(z)]n . (24)

Then it is easy to verify F and G share (1, 2) and (∞,∞). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.1 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) . (25)

According to Lemma 2.2 and Lemma 2.3, we have

T (r, F ) = nT (r, f(z + c)) + S(r, f) = nT (r, f) + S(r, f) . (26)



140 Chao Meng and Gang Liu

It’s obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

f(z + c)

)
≤ 2T (r, f(z + c)) = 2T (r, f) + S(r, f) , (27)

N(r, F ) = N(r, f(z + c)) ≤ T (r, f(z + c)) = T (r, f) + S(r, f) , (28)

N(r,G) = N(r, f) ≤ T (r, f) . (29)

N∗(r,∞;F,G) = 0 . (30)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) . (31)

Combining (25), (26), (27), (28), (29), (30) and (31), we deduce

(n− 8)T (r, f) ≤ S(r, f) , (32)

which contradicts with n ≥ 9. Therefore H ≡ 0. Similar to the proof of Theorem
1.5, we can get the conclusion of Theorem 1.6.

5. Proof of Theorem 1.7

Let

F = fn(z + c), G = [f ′(z)]n . (33)

Then it is easy to verify F and G share (1, 0) and (∞, 0). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.6 that

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+S(r, F ) + S(r,G) . (34)

Since

N
1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1) , (35)

we get from (34) and (35) that

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) . (36)
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According to Lemma 2.2 and Lemma 2.3, we have

T (r, F ) = nT (r, f(z + c)) + S(r, f) = nT (r, f) + S(r, f) . (37)

It’s obvious that

N(r, F ) = N(r, f(z + c)) ≤ T (r, f(z + c)) = T (r, f) + S(r, f) , (38)

N2

(
r,

1

F

)
= 2N

(
r,

1

f(z + c)

)
≤ 2T (r, f(z + c)) = 2T (r, f) + S(r, f) , (39)

NL

(
r,

1

F − 1

)
≤ N

(
r,
F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+ S(r, f)

≤ N(r, f(z + c)) +N

(
r,

1

f(z + c)

)
+ S(r, f)

≤ 2T (r, f) + S(r, f) . (40)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) , (41)

NL

(
r,

1

G− 1

)
≤ N

(
r,
G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N(r,G) +N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

f ′

)
+ S(r, f)

≤ N(r, f) +N2

(
r,

1

f

)
+N(r, f) + S(r, f)

≤ 3T (r, f) + S(r, f) . (42)

Combining (36), (37), (38), (39), (40), (41) and (42), we deduce

(n− 16)T (r, f) ≤ S(r, f) , (43)

which contradicts with n ≥ 17. Therefore H ≡ 0. Similar to the proof of
Theorem 1.5, we can get the conclusion of Theorem 1.7.
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6. Proof of Theorem 1.9

Let

F = fn(qz), G = [f ′(z)]n . (44)

Then it is easy to verify F and G share (1, 2) and (∞, 0). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.1 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) . (45)

According to Lemma 2.2 and Lemma 2.7, we have

T (r, F ) = nT (r, f(qz)) + S(r, f) = nT (r, f) + S(r, f) , (46)

N(r, F ) = N(r, f(qz)) = N(r, f(z)) + S(r, f) ≤ T (r, f) + S(r, f) , (47)

N2

(
r,

1

F

)
= 2N

(
r,

1

f(qz)

)
≤ 2T (r, f(qz)) = 2T (r, f) + S(r, f) . (48)

It’s obvious that

N(r,G) = N(r, f) ≤ T (r, f) . (49)

N∗(r,∞;F,G) ≤ N(r,G) = N(r, f) ≤ T (r, f) . (50)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) . (51)

Combining (45), (46), (47), (48), (49), (50) and (51), we deduce

(n− 9)T (r, f) ≤ S(r, f) , (52)

which contradicts with n ≥ 10. Therefore H ≡ 0. By integration, we get

1

F − 1
=

A

G− 1
+B , (53)

where A 6= 0 and B are constants. From (53) we have

G =
(B −A)F + (A−B − 1)

BF − (B + 1)
. (54)

We discuss the following three cases.

Case I. Suppose that B 6= 0,−1. From (54), we have

N

(
r,

1

F − B+1
B

)
= N(r,G) . (55)
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From the second fundamental theorem and Lemma 2.7, we have

nT (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r.

1

F

)
+N

(
r,

1

F − B+1
B

)
+ S(r, f)

≤ N(r, f(qz)) +N

(
r,

1

f(qz)

)
+N(r, f) + S(r, f) , (56)

which contradicts with n ≥ 10.

Case II. Suppose that B = 0. From (54), we have

G = AF − (A− 1) . (57)

If A 6= 1, from (57) we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1

G

)
. (58)

From the second fundamental theorem and Lemma 2.4, we have

nT (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r.

1

F

)
+N

(
r,

1

F − A−1
A

)
+ S(r, f)

≤ N(r, f(qz)) +N

(
r,

1

f(qz)

)
+N

(
r,

1

f ′

)
≤ N(r, f(qz)) +N

(
r,

1

f(qz)

)
+N2

(
r,

1

f

)
+N(r, f) + S(r, f) , (59)

which contradicts with n ≥ 10. Thus A = 1. From (57) we have F = G, that is
fn(qz) = [f ′(z)]n. Hence f ′(z) = tf(qz), for a constant t with tn = 1.

Case III. Suppose that B = −1. From (54) we have

G =
(A+ 1)F −A

F
. (60)

If A 6= −1, we obtain from (60) that

N

(
r,

1

F − A
A+1

)
= N

(
r,

1

G

)
. (61)
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By the same reasoning discussed in Case II, we obtain a contradiction. Hence
A = −1. From (60), we get FG = 1, that is

fn(qz)[f ′(z)]n = 1 . (62)

Since [f ′(z)]n and fn(qz) share (∞, 0), from (62) we get

N(r, f ′) = 0, T (r, f ′) = T (r, f(qz)) + S(r, f) , (63)

and

[f ′(z)]2n =
[f ′(z)]n

fn(qz)
=

[f ′(z)]n

fn(z)

fn(qz)
fn(z)

. (64)

From Lemma 2.8 and the logarithmic derivative lemma, we get

m(r, f ′) = S(r, f) . (65)

By (63) and (65), we know that

T (r, f(qz)) = T (r, f ′) = S(r, f) , (66)

which is a contradiction with Lemma 2.7. The proof of Theorem 1.9 is completed.

7. Proof of Theorem 1.10

Let

F = fn(qz), G = [f ′(z)]n . (67)

Then it is easy to verify F and G share (1, 2) and (∞,∞). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.1 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) . (68)

According to Lemma 2.2 and Lemma 2.7, we have

T (r, F ) = nT (r, f(qz)) + S(r, f) = nT (r, f) + S(r, f) , (69)

N(r, F ) = N(r, f(qz)) = N(r, f(z)) + S(r, f) ≤ T (r, f) + S(r, f) , (70)

N2

(
r,

1

F

)
= 2N

(
r,

1

f(qz)

)
≤ 2T (r, f(qz)) = 2T (r, f) + S(r, f) . (71)

It’s obvious that

N(r,G) = N(r, f) ≤ T (r, f) . (72)

N∗(r,∞;F,G) = 0 . (73)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) . (74)
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Combining (68), (69), (70), (71), (72), (73) and (74), we deduce

(n− 8)T (r, f) ≤ S(r, f) , (75)

which contradicts with n ≥ 9. Therefore H ≡ 0. Similar to the proof of Theorem
1.9, we can get the conclusion of Theorem 1.10.

8. Proof of Theorem 1.11

Let

F = fn(qz), G = [f ′(z)]n . (76)

Then it is easy to verify F and G share (1, 0) and (∞, 0). Let H be defined as
above. Suppose that H 6≡ 0. It follows from Lemma 2.6 that

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+S(r, F ) + S(r,G) . (77)

Since

N
1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1) , (78)

we get from (77) and (78) that

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) . (79)

According to Lemma 2.2 and Lemma 2.7, we have

T (r, F ) = nT (r, f(qz)) + S(r, f) = nT (r, f) + S(r, f) . (80)

It’s obvious that

N(r, F ) = N(r, f(qz)) ≤ T (r, f(qz)) = T (r, f) + S(r, f) , (81)

N2

(
r,

1

F

)
= 2N

(
r,

1

f(qz)

)
≤ 2T (r, f(qz)) = 2T (r, f) + S(r, f) , (82)

NL

(
r,

1

F − 1

)
≤ N

(
r,
F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+ S(r, f)
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≤ N(r, f(qz)) +N

(
r,

1

f(qz)

)
+ S(r, f)

≤ 2T (r, f) + S(r, f) . (83)

Lemma 2.4 gives

N2

(
r,

1

G

)
= 2N

(
r,

1

f ′

)
≤ 2N2

(
r,

1

f

)
+ 2N(r, f) + S(r, f)

≤ 4T (r, f) + S(r, f) , (84)

NL

(
r,

1

G− 1

)
≤ N

(
r,
G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N(r,G) +N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

f ′

)
+ S(r, f)

≤ N(r, f) +N2

(
r,

1

f

)
+N(r, f) + S(r, f)

≤ 3T (r, f) + S(r, f) . (85)

Combining (79), (80), (81), (82), (83), (84) and (85), we deduce

(n− 16)T (r, f) ≤ S(r, f) , (86)

which contradicts with n ≥ 17. Therefore H ≡ 0. Similar to the proof of
Theorem 1.9, we can get the conclusion of Theorem 1.11.
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