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RIESZ TRIPLE ALMOST LACUNARY χ3 SEQUENCE SPACES

DEFINED BY A ORLICZ FUNCTION-I

N. SUBRAMANIAN, A. ESI∗ AND M. AIYUB

Abstract. In this paper we introduce a new concept for Riesz almost

lacunary χ3 sequence spaces strong P− convergent to zero with respect to
an Orlicz function and examine some properties of the resulting sequence

spaces. We introduce and study statistical convergence of Riesz almost

lacunary χ3 sequence spaces and some inclusion theorems are discussed.
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively. We write w3 for the set of all complex
triple sequences (xmnk), where m,n, k ∈ N, the set of positive integers. Then,
w3 is a linear space under the coordinate wise addition and scalar multiplication.

We can represent triple sequences by matrix. In case of double sequences we
write in the form of a square. In the case of a triple sequence it will be in the
form of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence
spaces is found in Hardy [7], Deepmala et al [9], Subramanian et al. [10-15] and
many others. Later on some initial work on triple sequence spaces are found in
Esi [2]-[5] Esi and Catalbaş [3], Esi and Savas [4], Savas and Esi [6], Sahiner
et al. [8] and many others.

Let (xmnk) be a triple sequence of real or complex numbers. Then the se-
ries

∑∞
m,n,k=1 xmnk is called a triple series. The triple series

∑∞
m,n,k=1 xmnk is

convergent if and only if the triple sequence (Smnk) is convergent, where

Smnk =
∑m,n,k
i,j,q=1 xijq(m,n, k = 1, 2, 3, ...) .
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A triple sequence x = (xmnk) is said to be analytic if

supm,n,k |xmnk|
1

m+n+k <∞.
The vector space of all triple analytic sequences are usually denoted by Λ3.

A sequence x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k →∞.
The vector space of all triple entire sequences are usually denoted by Γ3. Let

the set of sequences with this property be denoted by Λ3 and Γ3 is a metric
space with the metric

d(x, y) = supm,n,k

{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
, (1)

for allx = {xmnk}and y = {ymnk} in Γ3. Let φ = {finite sequences} .

Consider a triple sequence x = (xmnk). The (m,n, k)th section x[m,n,k] of

the sequence is defined by x[m,n,k] =
∑m,n,k

i,j,q=0xijqδijq for all m,n, k ∈ N,

δmnk =



0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...


with 1 in the (m,n, k)th position and zero otherwise.

A sequence x = (xmnk) is called triple gai sequence if ((m+ n+ k)! |xmnk|)
1

m+n+k

→ 0 as m,n, k →∞. The triple gai sequences will be denoted by χ3.

2. Definitions and Preliminaries

A triple sequence x = (xmnk) has limit 0 (denoted by P − limx = 0)

(i.e) ((m+ n+ k)! |xmnk|)1/m+n+k → 0 as m,n, k → ∞. We shall write more
briefly as P − convergent to 0.

Definition 2.1. An Orlicz function is a function M : [0,∞) → [0,∞) which is
continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for x > 0
and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced
by M (x+ y) ≤ M (x) + M (y) , then this function is called modulus function.
Different classes of sequence defined by Orlicz function have been introduced and
investigated by Prakash et al [16-21], Nakano [22], Lindenstrauss and Tzafriri
[23], Altin et al [24], Et et al [25], Esi et al [26-27], Tripathy and Mahanta
[28-29], Tripathy and Dutta [30-31],Tripathy and Goswami [32-35] and many
others.
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Definition 2.2. A triple sequence x = (xmnk) of real numbers is called almost
P− convergent to a limit 0 if

P −
lim

p,q,u→∞
supr,s,t≥0

1
pqu

∑r+p−1
m=r

∑s+q−1
n=s

∑t+u−1
k=t ((m+ n+ k)! |xmnk|)1/m+n+k →

0.

that is, the average value of (xmnk) taken over any rectangle
{(m,n, k) : r ≤ m ≤ r + p− 1, s ≤ n ≤ s+ q − 1, t ≤ k ≤ t+ u− 1} tends to 0
as both p, q and u tend to ∞, and this P− convergence is uniform in r, s and t.

Let us denote set of sequences with this property as
[
χ̂3
]
.

Definition 2.3. Let (qrst) , (qrst) ,
(
qrst
)

be sequences of positive numbers and

Qr =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs 6= 0,

Qs =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs 6= 0,

Qt =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs 6= 0. Then the transfor-

mation which is given by

Trst = 1

QrQsQt

∑r
m=1

∑s
n=1

∑t
k=1 qmqnqk ((m+ n+ k)! |xmnk|)1/m+n+k

is called

the Riesz mean of triple sequence x = (xmnk) . If P − limrstTrst (x) = 0, 0 ∈ R,
then the sequence x = (xmnk) is said to be Riesz convergent to 0. If x = (xmnk)
is Riesz convergent to 0, then we write PR − limx = 0.

Definition 2.4. The triple sequence θi,`,j = {(mi, n`, kj)} is called triple lacu-
nary if there exist three increasing sequences of integers such that
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m0 = 0, hi = mi −mr−1 →∞ as i→∞ and
n0 = 0, h` = n` − n`−1 →∞ as `→∞.
k0 = 0, hj = kj − kj−1 →∞ as j →∞.

Let mi,`,j = min`kj , hi,`,j = hih`hj , and θi,`,j be determined by
Ii,`,j = {(m,n, k) : mi−1 < m < mi andn`−1 < n ≤ n` andkj−1 < k ≤ kj} , qk =
mk

mk−1
, q` = n`

n`−1
, qj =

kj
kj−1

.

Let θi,`,j = {(mi, n`, kj)} be a triple lacunary sequence and qmqnqk be sequences
of positive real numbers such thatQmi =

∑
m∈(0,mi]

pmi
, Qn`

=
∑
n∈(0,n`] pn`

, Qnj

=
∑
k∈(0,kj ] pkj and Hi =

∑
m∈(0,mi]

pmi
, H =

∑
n∈(0,n`] pn`

, H =
∑
k∈(0,kj ] pkj .

Clearly, Hi = Qmi −Qmi−1 , H` = Qn`
−Qn`−1

, Hj = Qkj −Qkj−1 . If the Riesz
transformation of triple sequences is RH-regular, and Hi = Qmi−Qmi−1 →∞ as

i → ∞, H =
∑
n∈(0,n`] pn`

→ ∞ as ` → ∞, H =
∑
k∈(0,kj ] pkj → ∞ as j → ∞,

then θ
′

i,`,j = {(mi, n`, kj)} =
{(
QmiQnjQkk

)}
is a triple lacunary sequence. If

the assumptions Qr →∞ as r →∞, Qs →∞ as s→∞ and Qt →∞ as t→∞
may be not enough to obtain the conditions Hi → ∞ as i → ∞, H` → ∞ as

`→∞ and Hj →∞ as j →∞ respectively.
Throughout the paper, we assume that Qr = q11 +q12 + . . .+qrs →∞ (r →∞) ,

Qs = q11+q12+. . .+qrs →∞ (s→∞) , Qt = q11+q12+. . .+qrs →∞ (t→∞) ,
such that Hi = Qmi−Qmi−1 →∞ as i→∞, H` = Qn`

−Qn`−1
→∞ as `→∞

and Hj = Qkj −Qkj−1 →∞ as j →∞.
Let Qmi,n`,kj = QmiQn`

Qkj , Hi`j = HiH`Hj ,

I
′

i`j =
{

(m,n, k) : Qmi−1
< m < Qmi

, Qn`−1
< n < Qn`

and Qkj−1
< k < Qkj

}
,

Vi =
Qmi

Qmi−1
, V ` =

Qn`

Qn`−1
and V j =

Qkj

Qkj−1
. and Vi`j = ViV `V j .

If we take qm = 1, qn = 1 and qk = 1 for all m,n and k then Hi`j , Qi`j , Vi`j and

I
′

i`j reduce to hi`j , qi`j , vi`j and Ii`j .

Let f be an Orlicz function and p = (pmnk) be any factorable triple sequence
of strictly positive real numbers, we define the following sequence spaces:

[
χ3
R, θi`j , q, f, p

]
=

{
P − lim

i,`,j→∞

1

Hi,`j

∑
i∈Ii`j

∑
`∈Ii`j

×
∑
j∈Ii`j

qmqnqk [f ((m+ n+ k)! |xm+i,n+`,k+j |)pmnk ] = 0

}
, uniformly in i, ` and j.

[
Λ3
R, θi`j , q, f, p

]
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=

{
x = (xmnk) : P − supi,`,j

1

Hi,`j

∑
i∈Ii`j

∑
`∈Ii`j

×
∑
j∈Ii`j

qmqnqk [f |xm+i,n+`,k+j |pmnk ] <∞
}

, uniformly in i, ` and j.
Let f be an Orlicz function, p = pmnk be any factorable double sequence of
positive real numbers and qm, qn and qk be sequences of positive numbers and

Qr = q11 + · · · qrs, Qs = q11 · · · qrs and Qt = q11 · · · qrs,
If we choose qm = 1, qn = 1 and qk = 1 for all m,n and k, then we obtain the
following sequence spaces.

[
χ3
R, q, f, p

]
=

{
P − lim

r,s,t→∞

1

QrQsQt

r∑
m=1

s∑
n=1

×
t∑

k=1

qmqnqk [f ((m+ n+ k)! |xm+i,n+`,k+j |)pmnk ] = 0

}
, uniformly in i, ` and j.

[
Λ3
R, q, f, p

]
=

{
P − supr,s,t

1

QrQsQt

r∑
m=1

s∑
n=1

×
t∑

k=1

qmqnqk [f ((m+ n+ k)! |xm+i,n+`,k+j |)pmnk ] <∞
}

, uniformly in i, ` and j.

Definition 2.5. Let f be an Orlicz function and p = (pmnk) be any factorable
triple sequence of positive real numbers, we define the following sequence space:
θi,`,j = {(mi, n`, kj)} be a triple lacunary sequence

χ3
f

[
ACθi,`,j , p

]
=

{
P − limi,`,j

1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j

[
f ((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

= 0

}
, uniformly in i, ` and j.

We shall denote χ3
f

[
ACθi,`,j , p

]
as χ3

[
ACθi,`,j , p

]
when pmnk = 1 for all m,n
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and k. If x is in χ3
[
ACθi,`,j , p

]
, we shall say that x is almost lacunary χ3

strongly p−convergent with respect to the Orlicz function f . Also note if f (x) =
x, pmnk = 1 for all m,n and k then χ3

f

[
ACθi,`,j , p

]
= χ3

[
ACθi,`,j

]
which are

defined as follows:

χ3
[
ACθi,`,j

]
=

{
P − lim

i,`,j

1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j

[
f ((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]
= 0

}
, uniformly in i, ` and j.
Again note if pmnk = 1 for all m,n and k then χ3

f

[
ACθi,`,j , p

]
= χ3

f

[
ACθi,`,j

]
.

we define

χ3
f

[
ACθi,`,j , p

]
=

{
P − lim

i,`,j

1

hi`j

∑
m∈Ik,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j

[
f ((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

= 0

}
, uniformly in i, ` and j.

Definition 2.6. Let f be an Orlicz function p = (pmnk) be any factorable triple
sequence of strictly positive real numbers, we define the following sequence space:

χ3
f [p]

=

{
P − lim

r,s,t→∞

1

rst

r∑
m=1

s∑
n=1

×
t∑

k=1

[
f ((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

= 0

}
, uniformly in i, ` and j.

If we take f (x) = x, pmnk = 1 for all m,n and k then χ3
f [p] = χ3.

Definition 2.7. Let θi,`,j be a triple lacunary sequence; the triple number se-

quence x is Ŝθi,`,j − p− convergent to 0 then

P − lim
i,`,j

1

hi,`,j
maxi,`,j

×
∣∣∣{(m,n, k) ∈ Ii,`,j : f ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

}∣∣∣ = 0.
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In this case we write Ŝθi,`,j − lim (f (m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
=

0.

3. Main results

Theorem 3.1. If f is any Orlicz function and a bounded factorable positive
triple number sequence (pmnk), then χ3

f

[
ACθi,`,j , P

]
is a linear space.

Proof. The proof is easy. Theorefore omit the proof. �

Theorem 3.2. For any modulus function f, we have χ3
[
ACθi,`,j

]
⊂ χ3

f

[
ACθi,`,j

]
Proof. Let x ∈ χ3

[
ACθi,`,j

]
so that for each i, ` and j

χ3
[
ACθi,`,j

]
=

{
lim
i,`,j

1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]
= 0

}
.

Since f is continuous at zero, for ε > 0 and choose δ with 0 < δ < 1 such that
f (t) < ε for every t with 0 ≤ t ≤ δ. We obtain the following,

1

hi`j
(hi`jε) +

1

hi`j

∑
m∈Ii,`,j

×
∑

n∈Ii,`,j and |xm+i,n+`,k+j−0|>δ

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

] 1

hi`j
(hi`jε)

+
1

hi`j
Kδ−1f (2)hi`j χ

3
[
ACθi,`,j

]
.

Hence i, ` and j go to infinity, so we are granted x ∈ χ3
f

[
ACθi,`,j

]
. �

Theorem 3.3. Let θi,`,j = {mi, n`, kj} be a triple lacunary sequence with
liminfiqi > 1, liminf`q` > 1 and liminfjqj > 1 then for any Orlicz func-
tion f, χ3

f (P ) ⊂ χ3
f

(
ACθi,`,j , P

)
Proof. Suppose liminfiqi > 1, liminf`q` > 1 and liminfjqj > 1 then there
exists δ > 0 such that qi > 1 + δ, q` > 1 + δ and qj > 1 + δ. This implies
hi

mi
≥ δ

1+δ ,
h`

n`
≥ δ

1+δ and
hj

kj
≥ δ

1+δ Then for x ∈ χ3
f (P ) , we can write for each

r, s and u.

Bi,`,j =
1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

∑
k∈Ii,`,j

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

=
1

hi`j

mi∑
m=1

n∑̀
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
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− 1

hi`j

mi−1∑
m=1

n`−1∑
n=1

ki−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

− 1

hi`j

mi∑
m=mi−1+1

n`−1∑
n=1

kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

− 1

hi`j

kj∑
k=kj+1

n∑̀
n=n`−1+1

mk−1∑
m=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

=
min`kj
hi`j

(
1

min`kj

mi∑
m=1

n∑̀
n=1

×
kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

− mk−1n`−1kj−1

hi`j

(
1

mi−1n`−1kj − 1

mi−1∑
m=1

n`−1∑
n=1

×
kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

− kj−1

hi`j

(
1

kj−1

mi∑
m=mi−1+1

×
n`−1∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

− n`−1

hi`j

(
1

n`−1

mk∑
m=mk−1+1

n`−1∑
n=1

×
kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

− mk−1

hi`j

(
1

mk−1

kj∑
k=1

n∑̀
n=n`−1+1

×
mk−1∑
m=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)
.

Since x ∈ χ3
f (P ) the last three terms tend to zero uniformly in m,n, k. Thus,

for each r, s and u
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Bi,`,j =
min`kj
hi`j

(
1

min`kj

mi∑
m=1

n∑̀
n=1

×
kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

− mi−1n`−1kj−1

hi`j

(
1

mi−1n`−1kj−1

mi−1∑
m=1

n`−1∑
n=1

×
kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

+O (1) .

Since hi`j = min`kj − mi−1n`−1kj−1 we are granted for each i, ` and j the
following

min`kj
hi`j

≤ 1+δ
δ and

mi−1n`−1kj−1

hi`j
≤ 1

δ .

The terms(
1

min`kj

∑mi

m=1

∑n`

n=1

∑kj
k=1 f

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

and(
1

mi−1n`−1kj−1

∑mi−1

m=1

∑n`−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
)

are both gai sequences for all i, ` and j. Thus Bi`j is a gai sequence for each i, `
and j. Hence x ∈ χ3

f

(
ACθi,`,j , P

)
. �

Theorem 3.4. Let θi,`,j = {m,n, k} be a triple lacunary sequence with limsupηqη
< ∞ and limsupiqi < ∞ then for any Orlicz function f, χ3

f

(
ACθi,`,j , P

)
⊂

χ3
f (p) .

Proof. Since limsupiqi < ∞ and limsupiqi < ∞ there exists H > 0 such that
qi < H, q` < H and qj < H for all i, ` and j. Let x ∈ χ3

f

(
ACθi,`,j , P

)
. Also

there exist i0 > 0, `0 > 0 and j0 > 0 such that for every a ≥ i0 b ≥ `0 and c ≥ j0
and i, ` and j.

A
′

abc

=
1

habc

∑
m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

f
[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

→ 0

asm,n, k →∞. LetG
′

= max
{
A
′

a,b,c : 1 ≤ a ≤ i0, 1 ≤ b ≤ `0 and 1 ≤ c ≤ j0
}

and p, q and t be such that mi−1 < p ≤ mi, n`−1 < q ≤ n` and mj−1 < t ≤ mj .
Thus we obtain the following:

1

pqt

p∑
m=1

q∑
n=1

t∑
k=1

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk
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≤ 1

mi−1n`−1kj−1

mi∑
m=1

n∑̀
n=1

kj∑
k=1

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

≤ 1

mi−1n`−1kj−1

i∑
a=1

∑̀
b=1

×
j∑
c=1

 ∑
m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk


=

1

mi−1n`−1kj−1

i0∑
a=1

`0∑
b=1

j0∑
c=1

ha,b,cA
′

a,b,c

+
1

mk−1n`−1kj−1

∑
(i0<a≤i)

⋃
(`0<b≤`)

⋃
(j0<c≤j)

ha,b,cA
′

a,b,c

≤ G
′

mi−1n`−1kj−1

i0∑
a=1

`0∑
b=1

j0∑
c=1

ha,b,c

+
1

mi−1n`−1kj−1

∑
(i0<a≤i)

⋃
(`0<b≤`)

⋃
(j0<c≤)

ha,b,cA
′

a,b,c

≤ G
′
mi0n`0kj0i0`0j0
mi−1n`−1kj−1

+
1

mi−1n`−1jj−1

∑
(i0<a≤i)

⋃
(`0<b≤`)

⋃
(j0<c≤j)

ha,b,cA
′

a,b,c

≤
G
′
mi0n`0kj0 i0`0j0

mi−1n`−1kj−1

+
(
supa≥i0

⋃
b≥`0

⋃
c≥j0A

′

a,b,c

) 1

mi−1n`−1kj−1

∑
(i0<a≤i)

⋃
(`0<b≤`)

⋃
(j0<c≤j)

ha,b,c

≤
G
′
mi0n`0kj0 i0`0j0

mi−1n`−1kj−1
+

ε

mi−1n`−1kj−1

∑
(i0<a≤i)

⋃
(`0<b≤`)

⋃
(j0<c≤j)

ha,b,c

≤
G
′
mi0n`0kj0 i0`0j0

mi−1n`−1kj−1
+ εH3.

Since mi, n` and kj both approache to infinity as both p, q and t approache to
infinity, it follows that

1

pqt

p∑
m=1

q∑
n=1

t∑
k=1

[
((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

]pmnk

= 0

, uniformly in i, ` and j. Hence x ∈ χ3
f (P ) . �
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Theorem 3.5. Let θi,`,j be a triple lacunary sequence. Then

(i) (xmnk)
P→ χ3

(
Ŝθi,`,j

)
(ii)
(
ACθi,`,j

)
is a proper subset of

(
Ŝθi,`,j

)
(iii) If x ∈ Λ3 and (xmnk)

P→ χ3
(
Ŝθi,`,j

)
then (xmnk)

P→ χ3
(
ACθi,`,j

)
(iv) χ3

(
Ŝθi,`,j

)⋂
Λ3 = χ3

[
ACθi,,`,j

]⋂
Λ3.

Proof. For all r, s and u

∣∣∣{(m,n, k) ∈ Ii,`,j : ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
}

= 0
∣∣∣

≤
∑

m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j and |xm+i,n+`,k+j |=0

((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

≤
∑

m∈Ii,`,j

∑
n∈Ii,`,j

∑
k∈Ii,`,j

((m+ n)! |xm+i,n+`,k+j − 0|)1/m+n+k

, for all r, s and u

P − lim
i,`,j

1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j

((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
= 0

This implies, for all i, ` and j

P − lim
i,`,j

1

hi,`,j

∣∣∣{(m,n, k) ∈ Ii,`,j : ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
= 0
}∣∣∣

= 0.

(ii) Let x = (xmnk) be defined as follows:
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(xmnk) =



1 2 3 ...
[ 4
√
hi,`,j]

m+n+k

(m+n+k)! 0 . . .

1 2 3 ...
[ 4
√
hi,`,j]

m+n+k

(m+n+k)! 0 . . .

.

.

.

1 2 3 ...
[ 4
√
hi,`,j]

m+n+k

(m+n+k)! 0 . . .

.

.

.
0 0 0 ...0 0 . . .
.
.
.



;

Here x is an triple sequence and for all i, ` and j

P − limi,`,j
1

hk,`,j

∣∣∣{(m,n, k) ∈ Ii,`,j : ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
= 0
}∣∣∣

= P − limi,`,j
1

hi,`,j

(
(m+ n+ k)!

[
4
√
hi,`,j

]m+n+k

(m+ n+ k)!

)1/m+n+k

= 0.

Therefore (xmnk)
P→ χ3

(
Ŝθi,`,j

)
. Also

P − limi,`,j
1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

∑
k∈Ii,`,j

((m+ n+ k)! |xm+i,n+`,k+j |)1/m+n+k

= P − 1

2

(
lim
i,`,j

1

hi,`,j

×
(

(m+ n+ k)!
[

4
√
hi,`,j

]m+n+k [
4
√
hi,`,j

]m+n+k [
4
√
hi,`,j

]m+n+k

(m+ n+ k)!

)1/m+n+k

+ 1

)

=
1

2
.

Therefore (xmnk)
P

6→ χ3
(
ACθi,`,j

)
.

(iii) If x ∈ Λ3 and (xmnk)
P→ χ3

(
Ŝθi,`,j

)
then (xmnk)

P→ χ3
(
ACθi,`,j

)
.

Suppose x ∈ Λ3 then for all r, s and u, ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

≤M for all m,n, k. Also for given ε > 0 and i, ` and j large for all r, s and u we



Riesz Triple Almost Lacunary χ3 sequence spaces defined by a Orlicz function-I 49

obtain the following:

1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

∑
k∈Ii,`,j

((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

=
1

hi`j

∑
m∈Ik,`

∑
n∈Ii,`,j

×
∑

k∈Ik,`,j and |xm+i,n+`,k+j |≥0

((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

+
1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j and |xm+i,n+`,k+j |≤0

((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

≤ M

hi`j

∣∣∣{(m,n, k) ∈ Ii,`,j : ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
}

= 0
∣∣∣+ ε.

Therefore x ∈ Λ3 and (xmnk)
P→ χ3

(
Ŝθi,`,j

)
this implies (xmnk)

P→ χ3
(
ACθi,`,j

)
.

(iv)χ3
(
Ŝθi,`,j

)⋂
Λ3 = χ3

[
ACθi,`,j

]⋂
Λ3. Follows from (i),(ii) and (iii). �

Theorem 3.6. If f be any Orlicz function then χ3
f

[
ACθi,`,j

]
/∈ χ3

(
Ŝθi,`,j

)
Proof. Let x ∈ χ3

f

[
ACθi,`,j

]
, for all i, ` and j.

Therefore we have
1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

∑
k∈Ii,`,j

f
[
((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

]
≥ 1

hi`j

∑
m∈Ii,`,j

∑
n∈Ii,`,j

×
∑

k∈Ii,`,j and |xm+r,n+s,k+u|=0

f
[
((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k

]
>

1

hi`j
f (0)

∣∣∣{(m,n, k) ∈ Ii,`,j : ((m+ n+ k)! |xm+i,n+`,k+j − 0|)1/m+n+k
}

= 0
∣∣∣ .

Hence x /∈ χ3
(
Ŝθi,`,j

)
. �
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