그림 2. 의도 분석 프로세스 Fig. 2. Intent analysis process
그림 1. 의도 분석 모델 Fig. 1. Intent analysis model
그림 3. Word2vec (skip-gram) 모델 Fig. 3. Word2vec (skip-gram) model
표 1. 학습 및 테스트용 데이터 셋 – 입력값 Table 1. Dataset for training and test – Input attribute
표 2. 학습 및 테스트용 데이터 셋 - 출력값 Table 2. Dataset for training and test – Output attribute
표 3. 화행 클래스 Table 3. Speech-act class
표 4. 개념열 클래스 Table 4. Concept-sequence class
표 5. 한글 형태소 품사-태그 표 (일부분) [12] Table 5. Korean morpheme part of speech-tag table (partial) [12]
표 6. Word2Vec 모델의 하이퍼 파라미터 Table 6. Hyper parameters of Word2Vec model
표 7. 합성곱 신경망 모델의 하이퍼 파라미터 Table 7. Hyper parameters of Convolutional Neural Network model
표 8. 파라미터 변화에 따른 제안 모델의 실험 결과 (화행 / 개념열) Table 8. Experiment result of proposed model according to parameter change (speech-act / concept-sequence)
표 9. 제안 방법과 타 모델들 간 성능 비교 Table 9. Performance comparison between proposed model and other models
참고문헌
- Kyung-soon Lee, Jin-xia Huang, Oh-woog Kwon, Young-kil Kim. "A Chatter Bot for a Task-Oriented Dialogue System," KIPS Transactions on Software and Data Engineering6, No.11, 499-506, 2017. https://doi.org/10.3745/KTSDE.2017.6.11.499
- Oh-Woog Kwon, Teakgyu Hong, Jin-Xia Huang and Young-Kil Kim, "An Analysis for Dialogue Processing Technologies and Service Trends of Virtual Personal Assistants," Communications of the Korean Institute of Information Scientists and Engineers, Vol.35, No.8, pp.19-27, 2017.
- Hyun-Jung Lee, Analysis and Prediction of Speakers' Intentions in a Dialogue-based NLIDB, PhD's Thesis of Sokang University, Seoul, South Korea, 2014.
- Natural language processing technology for dialog system development, https://m.blog.naver.com/PostView.nhn?blogId=naver_search&logNo=221027662050&proxyReferer=https%3A%2F%2Fwww.google.co.kr%2F (accessed Nov. 6, 2018).
- N. Reithinger and E. Maier, "Utilizing Statistical Dialogue Act Processing in VERBMOBIL," Proceedings of the 33rd annual meeting on Association for Computational Linguistics, Cambridge, Massachusetts, pp.116-121, 1995
- Jong Min En, Song Wook Lee, Jung Yun Seo, "An analysis of Speech Acts for Korean Using Support Vector Machines," The KIPS Transactions : Part B, Vol.12, No.3, pp.365-368, 2005
- Lee, Hyunjung, Kim, Harksoo, Seo, Jungyun, "Domain action classification using a maximum entropy model in a schedule management domain," AI Communications, Vol.21, No.4, pp.221-229, 2008 https://doi.org/10.3233/AIC-2008-0425
- R. W. Smith and D. R. Hipp, Spoken Natural Language Dialog Systems: a Practical Approach, Oxford University Press Inc, Oxford, United Kingdom, 1995.
- Hwang, Jaw-Won; Ko, Young-Joong, "A Korean Sentence and Document Sentiment Classification System Using Sentiment Features," Korean Institute of Information Scientists and Engineers, Vol.14, No.3, pp.336-340, 2008
- National Law Information Center, http://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000110550#AJAX (accessed Nov. 6, 2018).
- Dore, J, "Holophrases, speech acts and language universals," Journal of Child Language, Vol.2, No.1, pp.21-40, 1975. https://doi.org/10.1017/S0305000900000878
- KKMA morpheme analyzer, http://kkma.snu.ac.kr/ (accessed Nov. 6, 2018).
- Y. Goldberg, O. Levy, "word2vec Explained:deriving Mikolov et al.'s negative-sampling word-embedding method", arXiv preprint arXiv: 1402.3722, 2014.