DOI QR코드

DOI QR Code

Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction

  • Kim, Seonyoung (Department of Foods and Nutrition, Kookmin University) ;
  • Kang, Seok-Seong (Department of Food Science and Biotechnology, Dongguk University) ;
  • Choi, Soo-Im (Plant Resources Research Institute, Duksung Women's University) ;
  • Kim, Gun-Hee (Plant Resources Research Institute, Duksung Women's University) ;
  • Imm, Jee-Young (Department of Foods and Nutrition, Kookmin University)
  • Received : 2018.10.04
  • Accepted : 2018.11.20
  • Published : 2019.01.28

Abstract

Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced $NF-{\kappa}B$ and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment ($100{\mu}g/ml$) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.

Keywords

Acknowledgement

Grant : Development of Global Senior-friendly Health Functional Food Materials from Marine Resources

Supported by : Ministry of Oceans and Fisheries

References

  1. Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone 40: 251-264. https://doi.org/10.1016/j.bone.2006.09.023
  2. Vaananen HK, Laitala-Leinonen T. 2008. Osteoclast lineage and function. Arch. Biochem. Biophys. 473: 132-138. https://doi.org/10.1016/j.abb.2008.03.037
  3. Wagner EF, Eferl R. 2005. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208: 126-140. https://doi.org/10.1111/j.0105-2896.2005.00332.x
  4. Logar DB, Komadina R, Prezelj J, Ostanek B, Trost Z, Marc J. 2007. Expression of bone resorption genes in osteoarthritis and in osteoporosis. J. Bone Miner Metab. 25: 219-225. https://doi.org/10.1007/s00774-007-0753-0
  5. Wijesekara I, Yoon NY, Kim SK. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 36: 408-414. https://doi.org/10.1002/biof.114
  6. Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T. 2004. Local and chemical distribution of phlorotannins in brown algae. J. Appl. Phycol. 16: 291-296. https://doi.org/10.1023/B:JAPH.0000047781.24993.0a
  7. Li Y, Qian ZJ, Ryu B , Lee SH, Kim MM, Kim SK. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 17: 1963-1973. https://doi.org/10.1016/j.bmc.2009.01.031
  8. Kang MC, Wijesinghe WAJP, Lee SH, Kang SM, Ko SC, Yang X, et al. 2014. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food Chem. Toxicol. 158: 433-437. https://doi.org/10.1016/j.foodchem.2014.02.112
  9. Kang KA, Chae S, Lee KH, Zhang R, Jung MS, Kim SY, et al. 2005. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett. 579: 6295-6304. https://doi.org/10.1016/j.febslet.2005.10.008
  10. Yang YI, Shin HS, Kim SH, Park WY, Lee KT, Choi JH. 2012. 6,6'-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE2 production and inflammatory cytokine expression in macrophages: The inhibition of $NF{\kappa}B$. Int. Immunopharmacol. 12: 510-517. https://doi.org/10.1016/j.intimp.2012.01.005
  11. Jung WK, Heo SJ, Jeon YJ, Lee CM, Park YM, Byun HG, et al. 2009. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agric. Food Chem. 57: 4439-4446. https://doi.org/10.1021/jf9003913
  12. Kim MM, Van Ta Q, Mendis E, Rajapakse N, Jung WK, Byun HG, et al. 2006. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 79: 1436-1443. https://doi.org/10.1016/j.lfs.2006.04.022
  13. Lee D, Imm JY. 2017. AMP kinase activation and inhibition of nuclear factor-kappa B (NF-${\kappa}B$) translocation contribute to the anti-inflammatory effect of tricin. J. Food Biochem. 41: e12293. https://doi.org/10.1111/jfbc.12293
  14. Shin HC, Hwang HJ, Kang KJ, Lee BH. 2006. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29: 165-171. https://doi.org/10.1007/BF02974279
  15. Lee JH, Ko JY, Oh JY, Kim CY, Lee HJ, Kim J, et al. 2014. Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one-step. Food Chem. 158: 433-437. https://doi.org/10.1016/j.foodchem.2014.02.112
  16. Hayman AR. 2008. Tartrate-resistant acid phosphatase (TRAP) and osteoclast/immune cell dichotomy. Autoimmunity 41: 218-223. https://doi.org/10.1080/08916930701694667
  17. Rahim AH, Setiawan B, Dewi FRP, Noor Z. 2015. Regulation by phloroglucinol of Nrf2/Maf-mediated expression of antioxidant enzymes and inhibition of osteoclastogenesis via the RANKL/RANK signaling pathway: In silico study. Acta Infom. Med. 23: 228-232. https://doi.org/10.5455/aim.2015.23.228-232
  18. Boyce BF, Xing L. 2008. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 473: 139-146. https://doi.org/10.1016/j.abb.2008.03.018
  19. Ihn HJ, K im JA, Cho HS, Shin HI, K im GY, Choi YH, et al. 2017. Diphlorethohydroxycarmalol from Ishige okamurae suppresses osteoclast differentiation by downregulating the NF-${\kappa}B$ signaling pathway. Int. J. Mol. Sci. 18: 12. https://doi.org/10.3390/ijms18010012
  20. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 899-901.
  21. Zhao Q, Wang X, Liu Y, He A, Jia R. 2010. NFATc1: Functions in osteoclasts. Int. J. Biochem. Cell Biol. 42: 576-579. https://doi.org/10.1016/j.biocel.2009.12.018
  22. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, et al. 2004. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 272: 26475-26480.
  23. Wada T, Nakashima T, Hiroshi N, Penninger JM. 2006. RANKL RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12: 17-25. https://doi.org/10.1016/j.molmed.2005.11.007
  24. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue JI, Reddy SV, et al. 2004. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J. Clin. Invest. 114: 475-484. https://doi.org/10.1172/JCI200419657
  25. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, et al. 2007. NF-${\kappa}B$ p50 and p52 regulate receptor activator of NF-${\kappa}B$ Ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282: 18245-18253. https://doi.org/10.1074/jbc.M610701200
  26. Kim MM, Kim SK. 2010. Effect of phloroglucinol on oxidative stress and inflammation. Food Chem. Toxicol. 48: 2925-2933. https://doi.org/10.1016/j.fct.2010.07.029
  27. Kim AR, Lee MS, Shin TS, Hua H, Jang BC, Choi JS, et al. 2011. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-${\kappa}B$, Akt, and p38 MAPK. Toxicol. In Vitro 25: 1789-1795. https://doi.org/10.1016/j.tiv.2011.09.012
  28. Jung WK, Ahn YW, Lee SH, Choi YH, Kim SK, Yea SS, et al. 2009. Ecklonia cava ethanolic extracts inhibit lipopolysaccharideinduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-${\kappa}B$ pathways. Food Chem. Toxicol. 47: 410-417. https://doi.org/10.1016/j.fct.2008.11.041
  29. Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP. 2004. Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic. Res. 38: 1257-1267. https://doi.org/10.1080/10715760400022145
  30. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. 2009. Oxidative stress in bone remodeling and disease. Trend Mol. Med. 15: 468-477. https://doi.org/10.1016/j.molmed.2009.08.004
  31. Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, et al. 2009. NADPH oxidase-derived reactive species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclast. J. Med. Invest. 56: 33-41. https://doi.org/10.2152/jmi.56.33
  32. Srinivasan S, Koenigstein A, Joseph J, Sun L, Kalyanaraman B, Zaidi M, et al. 2010. Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann. NY Acad. Sci. 1192: 245-252. https://doi.org/10.1111/j.1749-6632.2009.05377.x
  33. Kwon YB, Wang FF, Jang HD. 2018. Anti-osteoclastic effect of caffeic acid phenethyl ester in murine macrophages depends upon the suppression of superoxide anion production through the prevention of an active-Nox1 complex formation. J. Nutr. Biochem. 58: 158-168. https://doi.org/10.1016/j.jnutbio.2018.03.023
  34. Park SJ, Jeon YJ. 2012. Dieckol from Ecklonia cava suppresses the migration and invasion of HT1080 cells by inhibiting the focal adhesion kinase pathway downstream of Rac1-ROS signaling. Mol. Cell 33: 141-149. https://doi.org/10.1007/s10059-012-2192-6
  35. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, et al. 2005. Reactive oxygen species stimulates receptor activator of NF-${\kappa}B$ ligand expression in osteoblast. J. Biol. Chem. 280: 17497-17506. https://doi.org/10.1074/jbc.M409332200
  36. Sakai E, Shimada-Sugawara M, Yamaguchi Y, Sakamoto H, Fumimoto R, Fukuma Y, et al. 2013. Fisetin inhibits osteoclastogenesis through prevention of RANKL induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes. J. Pharmacol. Sci. 121: 288-298. https://doi.org/10.1254/jphs.12243FP
  37. Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, et al. 2010. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int. J. Biochem. Cell Biol. 42: 297-305. https://doi.org/10.1016/j.biocel.2009.11.009
  38. Ke K, Safder MA, Sul OJ, Kim WK, Suh JH, Joe Y, et al. 2015. Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol. Cell. Endocrinol. 409: 11-20. https://doi.org/10.1016/j.mce.2015.03.022
  39. Pi SH, Jeong GS, Oh HW, Kim YS, Pae HO, Chung HT, et al. 2010. Heme oxygenase-1 mediates nicotine- and lipopolysaccharide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase in human periodontal ligament cells. J. Periodontal Res. 45: 177-183. https://doi.org/10.1111/j.1600-0765.2009.01215.x

Cited by

  1. Anti-Inflammatory Effect of Ecklonia cava Extract on Porphyromonas gingivalis Lipopolysaccharide-Stimulated Macrophages and a Periodontitis Rat Model vol.11, pp.5, 2019, https://doi.org/10.3390/nu11051143
  2. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid β Production/Tau Hyperphosphorylation vol.17, pp.10, 2019, https://doi.org/10.3390/md17100591
  3. Artocarpus tonkinensis Extract Inhibits LPS-Triggered Inflammation Markers and Suppresses RANKL-Induced Osteoclastogenesis in RAW264.7 vol.11, 2019, https://doi.org/10.3389/fphar.2020.593829
  4. Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and RANKL-Induced Osteoclastogenesis in RAW 264.7 Macrophages vol.26, pp.3, 2019, https://doi.org/10.3390/molecules26030733
  5. Ecklonia cava Extract Exerts Anti-Inflammatory Effect in Human Gingival Fibroblasts and Chronic Periodontitis Animal Model by Suppression of Pro-Inflammatory Cytokines and Chemokines vol.10, pp.7, 2019, https://doi.org/10.3390/foods10071656
  6. Dieckol: a brown algal phlorotannin with biological potential vol.142, 2019, https://doi.org/10.1016/j.biopha.2021.111988