DOI QR코드

DOI QR Code

REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS

  • Received : 2018.02.16
  • Accepted : 2018.07.12
  • Published : 2019.01.31

Abstract

In this paper, we consider the structure of ${\gamma}$-constacyclic codes of length $2p^s$ over the Galois ring $GR(p^a,m)$ for any unit ${\gamma}$ of the form ${\xi}_0+p{\xi}_1+p^2z$, where $z{\in}GR(p^a,m)$ and ${\xi}_0$, ${\xi}_1$ are nonzero elements of the set ${\mathcal{T}}(p,m)$. Here ${\mathcal{T}}(p,m)$ denotes a complete set of representatives of the cosets ${\frac{GR(p^a,m)}{pGR(p^a,m)}}={\mathbb{F}}p^m$ in $GR(p^a,m)$. When ${\gamma}$ is not a square, the rings ${\mathcal{R}}_p(a,m,{\gamma})=\frac{GR(p^a,m)[x]}{{\langle}x^2p^s-{\gamma}{\rangle}}$ is a chain ring with maximal ideal ${\langle}x^2-{\delta}{\rangle}$, where ${\delta}p^s={\xi}_0$, and the number of codewords of ${\gamma}$-constacyclic code are provided. Furthermore, the self-orthogonal and self-dual ${\gamma}$-constacyclic codes of length $2p^s$ over $GR(p^a,m)$ are also established. Finally, we determine the Rosenbloom-Tsfasman (RT) distances and weight distributions of all such codes.

Keywords

References

  1. T. Abualrub and R. Oehmke, On the generators of $\mathbb{Z}_4$ cyclic codes of length $2^{e}$, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2126-2133. https://doi.org/10.1109/TIT.2003.815763
  2. E. R. Berlekamp, Negacyclic codes for the Lee metric, in Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), 298-316, Univ. North Carolina Press, Chapel Hill, NC, 1969.
  3. S. D. Berman, Semisimple cyclic and Abelian codes. II, Cybernetics 3 (1967), no. 3, 17-23 (1970). https://doi.org/10.1007/BF01119999
  4. T. Blackford, Negacyclic codes over $Z_4$ of even length, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1417-1424. https://doi.org/10.1109/TIT.2003.811915
  5. A. R. Calderbank, A. R. Hammons, P. V. Kumar, N. J. A. Sloane, and P. Sole, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 218-222. https://doi.org/10.1090/S0273-0979-1993-00426-9
  6. G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 337-342. https://doi.org/10.1109/18.75249
  7. B. Chen, L. Lin, and H. Liu, Matrix product codes with Rosenbloom-Tsfasman metric, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 3, 687-700.
  8. H. Q. Dinh, Negacyclic codes of length $2^{s}$ over Galois rings, IEEE Trans. Inform. Theory 51 (2005), no. 12, 4252-4262. https://doi.org/10.1109/TIT.2005.859284
  9. H. Q. Dinh, Constacyclic codes of length $p^{s}$ over $\mathbb{F}_{{p}^{m}}\;+\;u\mathbb{F}_{{p}^{m}}$, J. Algebra 324 (2010), no. 5, 940-950. https://doi.org/10.1016/j.jalgebra.2010.05.027
  10. H. Q. Dinh, H. Liu, X. Liu, and S. Sriboonchitta, On structure and distances of some classes of repeated-root constacyclic codes over Galois rings, Finite Fields Appl. 43 (2017), 86-105. https://doi.org/10.1016/j.ffa.2016.09.004
  11. H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. https://doi.org/10.1109/TIT.2004.831789
  12. S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127-153. https://doi.org/10.1007/s10623-005-2773-x
  13. S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the Rosenbloom-Tsfasman metric, Mosc. Math. J. 2 (2002), no. 1, 81-97, 199. https://doi.org/10.17323/1609-4514-2002-2-1-81-97
  14. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154
  15. W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
  16. K. Lee, The automorphism group of a linear space with the Rosenbloom-Tsfasman metric, European J. Combin. 24 (2003), no. 6, 607-612. https://doi.org/10.1016/S0195-6698(03)00077-5
  17. H. Liu and Y. Maouche, Some repeated-root constacyclic codes over Galois rings, IEEE Trans. Inform. Theory 63 (2017), no. 10, 6247-6255. https://doi.org/10.1109/TIT.2017.2738627
  18. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1998.
  19. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
  20. A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1 (1991), no. 4, 365-384; translated from Diskret. Mat. 1 (1989), no. 4, 123-139. https://doi.org/10.1515/dma.1991.1.4.365
  21. C.-S. Nedeloaia, Weight distributions of cyclic self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1582-1591. https://doi.org/10.1109/TIT.2003.811921
  22. V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
  23. A. Salagean, Repeated-root cyclic and negacyclic codes over a finite chain ring, Discrete Appl. Math. 154 (2006), no. 2, 413-419. https://doi.org/10.1016/j.dam.2005.03.016
  24. M. M. Skriganov, On linear codes with large weights simultaneously for the Rosenbloom-Tsfasman and Hamming metrics, J. Complexity 23 (2007), no. 4-6, 926-936. https://doi.org/10.1016/j.jco.2007.02.004
  25. M. Yu. Rozenblyum and M. A. Tsfasman, Codes for the m-metric, Probl. Inf. Transm. 33 (1997), no. 1, 45-52; translated from Problemy Peredachi Informatsii 33 (1997), no. 1, 55-63.
  26. L. Tang, C. B. Soh, and E. Gunawan, A note on the q-ary image of a $q_m$-ary repeated-root cyclic code, IEEE Trans. Inform. Theory 43 (1997), no. 2, 732-737. https://doi.org/10.1109/18.556131
  27. J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), no. 2, 343-345. https://doi.org/10.1109/18.75250
  28. J. Wolfmann, Negacyclic and cyclic codes over $Z_4$, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2527-2532. https://doi.org/10.1109/18.796397