DOI QR코드

DOI QR Code

EXTREMAL CONFIGURATIONS OF THREE OR FOUR SYMMETRIES ON A RIEMANN SURFACE

  • Kozlowska-Walania, Ewa (Institute of Mathematics Faculty of Mathematics Physics and Informatics University of Gdansk)
  • Received : 2018.01.30
  • Accepted : 2018.05.30
  • Published : 2019.01.31

Abstract

We consider Riemann surfaces with three or four symmetries, assuming that they have a maximal total number of ovals and find all the possible topological types of the symmetries realizing such a configuration.

Keywords

References

  1. E. Bujalance and A. F. Costa, On the group generated by three and four anticonformal involutions of Riemann surfaces with maximal number of fixed curves, in Mathematical contributions in honor of Professor Enrique Outerelo Dominguez (Spanish), 73-76, Homen. Univ. Complut, Editorial Complutense, Madrid, 2004.
  2. E. Bujalance, J. J. Etayo, J. M. Gamboa, and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces, Lecture Notes in Mathematics, 1439, Springer-Verlag, Berlin, 1990.
  3. G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces, J. Pure Appl. Algebra 121 (1997), no. 3, 253-269. https://doi.org/10.1016/S0022-4049(96)00068-0
  4. G. Gromadzki, On ovals on Riemann surfaces, Rev. Mat. Iberoamericana 16 (2000), no. 3, 515-527. https://doi.org/10.4171/RMI/282
  5. G. Gromadzki and M. Izquierdo, On ovals of Riemann surfaces of even genera, Geom. Dedicata 78 (1999), no. 1, 81-88. https://doi.org/10.1023/A:1005230712627
  6. A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, in Groups-St. Andrews 1981 (St. Andrews, 1981), 221-227, London Math. Soc. Lecture Note Ser., 71, Cambridge Univ. Press, Cambridge, 1982.
  7. S. M. Natanzon, Finite groups of homeomorphisms of surfaces and real forms of complex algebraic curves, Trans. Moscow Math. Soc. 1989, 1-51; translated from Trudy Moskov. Mat. Obshch. 51 (1988), 3-53, 258.
  8. D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233-240. https://doi.org/10.1017/S0305004100048891