DOI QR코드

DOI QR Code

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2018.07.27
  • 심사 : 2019.02.15
  • 발행 : 2019.01.25

초록

This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

키워드

참고문헌

  1. Ebrahimi, F. (2010), Smart functionally graded plates, Nova Science Publishers.
  2. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  3. Ebrahimi, F. and Barati, M.R. (2016b), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  4. Ebrahimi, F. and Barati, M.R. (2016c), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 1-11.
  5. Ebrahimi, F. and Barati, M.R. (2016d), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
  6. Ebrahimi, F. and Barati, M.R. (2016e), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  7. Ebrahimi, F. and Barati, M.R. (2016f), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
  8. Ebrahimi, F. and Barati, M.R. (2016g), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 1-22.
  9. Ebrahimi, F. and Barati, M.R. (2016h), "Flexural wave propagation analysis of embedded s-fgm nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
  10. Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
  11. Ebrahimi, F. and Barati, M.R. (2016j), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  12. Ebrahimi, F. and Barati, M.R. (2016k), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  13. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.21474/IJAR01/7340
  14. Ebrahimi, F. and Dabbagh, A. (2018), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromag. Waves Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918
  15. Ebrahimi, F., Sepiani, H.A. and Arani, A.G. (2011), Progress in Analysis of functionally graded structures, Nova Science Publishers.
  16. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  17. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  18. Jia, X.L., Zhang, S.M., Yang, J. and Kitipornchai, S. (2013), "Pullin instability of electrically actuated poly-SiGe graded Microbeams", Coupl. Syst. Mech., Int. J., 2(3), 215-230. https://doi.org/10.12989/csm.2013.2.3.215
  19. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low-dimensional Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
  20. Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033
  21. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  22. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Discrete layer solution to free vibrations of functionally graded magnetoelectro-elastic plates", Mech. Adv. Mater. Struct., 13(3), 249-266 https://doi.org/10.1080/15376490600582750
  23. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
  24. Tanaka, Y. (2018), "Active vibration compensator on moving vessel by hydraulic parallel mechanism", Int. J. Hydromechatronics, 1(3), 350-359. https://doi.org/10.1504/IJHM.2018.094887
  25. Tang, H., Li, L. and Hu, Y. (2019), "Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams", Appl. Math. Model., 66, 527-547. https://doi.org/10.1016/j.apm.2018.09.027
  26. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  27. Wang, Z., Xie, Z. and Huang, W. (2018), "A pin-moment model of flexoelectric actuators", Int. J. Hydromechatronics, 1(1), 72-90. https://doi.org/10.1504/IJHM.2018.090306
  28. Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37(1), 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003
  29. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev., B 71, 195404. https://doi.org/10.1103/PhysRevB.71.195404
  30. Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H. and Aifantis, E.C. (2014), "A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating", Appl. Math. Comput., 248, 169-183. https://doi.org/10.1016/j.amc.2014.09.075