References
- Akgoz, B. and Civalek, O . (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
- Alessi, R., Favata, A. and Micheletti, A. (2017), "Pressurized CNTs under tension: A finite-deformation lattice model", Compos. Part B: Eng., 115, 223-235. https://doi.org/10.1016/j.compositesb.2016.10.006
- Awang, M., Mohammadpour, E. and Muhammad, I.D. (2015), Finite Element Modeling of Nanotube Structures: Linear and Non-linear Models, Springer.
- Baykasoglu, C., Kirca, M. and Mugan, A. (2013), "Nonlinear failure analysis of carbon nanotubes by using molecularmechanics based models", Compos. Part B: Eng., 50, 150-157. https://doi.org/10.1016/j.compositesb.2013.02.008
- Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B: Eng., 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
- Caruntu, D.I. and Luo, L. (2014), "Frequency response of primary resonance of electrostatically actuated CNT cantilevers", Nonlinear Dyn., 78(3), 1827-1837. https://doi.org/10.1007/s11071-014-1537-4
- Eberhardt, O. and Wallmersperger, T. (2015), "Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes", Carbon, 95, 166-180. https://doi.org/10.1016/j.carbon.2015.07.092
- Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80.
- Eltaher, M.A. and Agwa, M.A. (2016), "Analysis of sizedependent mechanical properties of CNTs mass sensor using energy equivalent model", Sens. Actuat. A: Phys., 246, 9-17. https://doi.org/10.1016/j.sna.2016.05.009
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016a), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
- Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016b), "Nanobeam sensor for measuring a zeptogram mass", Int. J.of Mech. Mater. Des., 12(2), 211-221. https://doi.org/10.1007/s10999-015-9302-5
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016c), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
- Eltaher, M.A., Agwa, M. and Kabeel, A. (2018a), "Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model", J. Appl. Computat. Mech., 4(2), 75-86.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance Frequencies of Size Dependent Perforated Nonlocal Nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018c), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res. [Accepted]
- Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238
- Esbati, A.H. and Irani, S. (2018), "Probabilistic mechanical properties and reliability of carbon nanotubes", Arch. Civil Mech. Eng., 18(2), 532-545. https://doi.org/10.1016/j.acme.2017.05.001
- Gajbhiye, S.O. and Singh, S.P. (2015), "Vibration characteristics of open-and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff-Brenner potential", Acta Mechanica, 226(11), 3565-3586. https://doi.org/10.1007/s00707-015-1390-7
- Genoese, A., Genoese, A., Rizzi, N.L. and Salerno, G. (2017), "On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets", Compos. Part B: Eng., 115, 316-329. https://doi.org/10.1016/j.compositesb.2016.09.064
- Ghadyani, G., Soufeiani, L. and Ochsner, A. (2016), "On the characterization of the elastic properties of asymmetric singlewalled carbon nanotubes", J. Phys. Chem. Solids, 89, 62-68. https://doi.org/10.1016/j.jpcs.2015.10.013
- Ghadyani, G., Soufeiani, L. and Ochsner, A. (2017), "Angle dependence of the shear behaviour of asymmetric carbon nanotubes", Mater. Des., 116, 136-143. https://doi.org/10.1016/j.matdes.2016.11.097
- Haile, J.M. (1992), Molecular dynamics simulation: elementary methods, John Wiley & Sons, Inc.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0
- Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013. https://doi.org/10.1103/PhysRevB.58.14013
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145.
- Lee, J.H. and Lee, B.S. (2012), "Modal analysis of carbon nanotubes and nanocones using FEM", Computat. Mater. Sci., 51(1), 30-42. https://doi.org/10.1016/j.commatsci.2011.06.041
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Lu, X. and Hu, Z. (2010), "Evaluation of Mechanical Behaviors of Single-Walled Carbon Nanotubes by Finite Element Analysis", ASME 2010 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 81-91.
- Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Computat. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021
- Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard Iii, W.A. and Skiff, W.M. (1992), "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations", J. Am. Chem. Soc., 114(25), 10024-10035. https://doi.org/10.1021/ja00051a040
- Shahabodini, A., Ansari, R. and Darvizeh, M. (2018), "Atomisticcontinuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method", Compos. Struct., 185, 728-747. https://doi.org/10.1016/j.compstruct.2017.11.028
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017a), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017b), "Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory", Compos. Struct., 165, 74-82. https://doi.org/10.1016/j.compstruct.2017.01.013
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018a), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063
- She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018b), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of fg porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
- Shokrieh, M.M. and Rafiee, R. (2010), "Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach", Mater. Des., 31(2), 790-795. https://doi.org/10.1016/j.matdes.2009.07.058
- Vila, J., Fernandez-Saez, J. and Zaera, R. (2018), "Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model", J. Sound Vib., 420, 296-314. https://doi.org/10.1016/j.jsv.2018.01.040
- Yuan, X. and Wang, Y. (2018), "Radial deformation of singlewalled carbon nanotubes adhered to solid substrates and variations of energy: atomistic simulations and continuum analysis", Int. J. Solids Struct.
- Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin-Wall. Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003
- Zuberi, M.J.S. and Esat, V. (2016), "Evaluating the effects of size and chirality on the mechanical properties of single-walled carbon nanotubes through equivalent-continuum modelling", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(5), 913-926. https://doi.org/10.1177/1464420715588217
Cited by
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
- Hygro-Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature Distribution Based on a Modified Beam Theory and Nonlocal Strain Gradient Model vol.12, pp.5, 2020, https://doi.org/10.1142/s1758825120500544
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.293
- Nonlocal vibration of carbon/boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method vol.7, pp.5, 2019, https://doi.org/10.1093/jcde/qwaa041
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.033
- Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
- Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.221
- Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.253
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.263
- Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.0127
- The effects of ring and fraction laws: Vibration of rotating isotropic cylindrical shell vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.019
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.183
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.193