DOI QR코드

DOI QR Code

Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate

  • Salari, Erfan (Mechanical Engineering Department, Amirkabir University of Technology) ;
  • Ashoori, Alireza (Mechanical Engineering Department, Amirkabir University of Technology) ;
  • Vanini, Seyed Ali Sadough (Mechanical Engineering Department, Amirkabir University of Technology)
  • 투고 : 2018.05.19
  • 심사 : 2018.12.22
  • 발행 : 2019.01.25

초록

This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model, three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the thickness direction are considered. Based on Hamilton's principle and the adjacent equilibrium criterion, the stability equations of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the boundary conditions, porous nanoplate with simply supported boundary condition doesn't buckle.

키워드

참고문헌

  1. Akgoz, B. and Civalek, O. (2011a), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  2. Akgoz, B. and Civalek, O. (2011b), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Computat. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888
  3. Akgoz, B. and Civalek, O. (2016), "Static and dynamic response of sector-shaped graphene sheets", Mech. Adv. Mater. Struct., 23(4), 432-442. https://doi.org/10.1080/15376494.2014.984089
  4. Ashoori, A. and Vanini, S.S. (2016a), "Thermal buckling of annular microstructure-dependent functionally graded material plates resting on an elastic medium", Compos. Part B: Eng., 87, 245-255. https://doi.org/10.1016/j.compositesb.2015.10.024
  5. Ashoori, A. and Vanini, S.S. (2016b), "Nonlinear thermal stability and snap-through behavior of circular microstructure-dependent FGM plates", Eur. J. Mech.-A/Solids, 59, 323-332. https://doi.org/10.1016/j.euromechsol.2016.04.007
  6. Ashoori, A. and Vanini, S.S. (2017a), "Nonlinear bending, postbuckling and snap-through of circular size-dependent functionally graded piezoelectric plates", Thin-Wall. Struct., 111, 19-28. https://doi.org/10.1016/j.tws.2016.11.002
  7. Ashoori, A. and Vanini, S.S. (2017b), "Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling", Acta Mechanica, 228(9), 2945-2964. https://doi.org/10.1007/s00707-017-1857-9
  8. Ashoori, A., Salari, E. and Vanini, S.S. (2016), "Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates based on the nonlocal elasticity theory", Int. J. Mech. Sci., 119, 396-411. https://doi.org/10.1016/j.ijmecsci.2016.10.035
  9. Ashoori, A., Vanini, S.S. and Salari, E. (2017), "Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability", Appl. Phys. A, 123(4), 226. https://doi.org/10.1007/s00339-017-0825-5
  10. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375
  11. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278.
  12. Bagheri, H., Kiani, Y. and Eslami, M. (2017), "Asymmetric thermal buckling of annular plates on a partial elastic foundation", J. Thermal Stresses, 40(8), 1015-1029. https://doi.org/10.1080/01495739.2016.1265474
  13. Bagheri, H., Kiani, Y. and Eslami, M. (2018), "Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation", Comput. Math. Applicat., 75(5), 1566-1581. https://doi.org/10.1016/j.camwa.2017.11.021
  14. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  15. Baltacioglu, A., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Piping, 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  16. Bedroud, M., Nazemnezhad, R. and Hosseini-Hashemi, S. (2015), "Axisymmetric/asymmetric buckling of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Meccanica, 50(7), 1791-1806. https://doi.org/10.1007/s11012-015-0123-2
  17. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162.
  18. Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, New York, McGraw-Hill Book Co.
  19. Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2
  20. Civalek, O. (2006), "The determination of frequencies of laminated conical shells via the discrete singular convolution method", J. Mech. Mater. Struct., 1(1), 163-182. https://doi.org/10.2140/jomms.2006.1.163
  21. Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
  22. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  23. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  24. Civalek, O. and Demir, C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
  25. Dastjerdi, S. and Akgoz, B. (2018), "New static and dynamic analyses of macro and nano FGM plates using exact threedimensional elasticity in thermal environment", Compos. Struct., 192, 626-641. https://doi.org/10.1016/j.compstruct.2018.03.058
  26. Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B: Eng., 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031
  27. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  28. Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  29. Ebrahimi, F. and Salari, E. (2016a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  30. Ebrahimi, F. and Salari, E. (2016b), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., Int. J., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197
  31. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  32. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
  33. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  34. Fang, X.-Q. and Zhu, C.-S. (2017), "Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory", Compos. Struct., 160, 1191-1197. https://doi.org/10.1016/j.compstruct.2016.11.008
  35. Fang, X.-Q., Zhu, C.-S., Liu, J.-X. and Liu, X.-L. (2018a), "Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures", Physica B: Condensed Matter, 529, 41-56. https://doi.org/10.1016/j.physb.2017.10.038
  36. Fang, X.-Q., Zhu, C.-S., Liu, J.-X. and Zhao, J. (2018b), "Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure", Mater. Res. Express, 5(4), 045017. https://doi.org/10.1088/2053-1591/aab914
  37. Gurses, M., Civalek, O ., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Methods Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  38. Kiani, Y. and Eslami, M. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
  39. Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
  40. Lu, C., Lim, C.W. and Chen, W. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  41. Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016), "Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749. https://doi.org/10.1016/j.apm.2015.09.093
  42. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  43. Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
  44. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  45. Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.1155/2011/591716
  46. She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  47. Shen, J., Wang, H. and Zheng, S. (2018), "Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: Generalized differential quadrature method", Int. J. Mech. Sci., 135, 353-361. https://doi.org/10.1016/j.ijmecsci.2017.11.002
  48. Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Math. Model., 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022
  49. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  50. Wang, C. and Wang, C.Y. (2004), Exact Solutions for Buckling of Structural Members, CRC press.
  51. Wang, Q., Shi, D., Liang, Q. and Shi, X. (2016), "A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions", Compos. Part B: Eng., 88, 264-294. https://doi.org/10.1016/j.compositesb.2015.10.043
  52. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  53. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1331-1342. https://doi.org/10.1007/s11012-014-0094-8
  54. Zhang, X., Qian, Y., Zhu, Y. and Tang, K. (2014), "Synthesis of Mn 2 O 3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance", Nanoscale, 6(3), 1725-1731. https://doi.org/10.1039/C3NR05551E
  55. Zhu, C.-S., Fang, X.-Q., Liu, J.-X. and Li, H.-Y. (2017), "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Eur. J. Mech.-A/Solids, 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08.001

피인용 문헌

  1. Nonlinear thermal stability and snap-through buckling of temperature-dependent geometrically imperfect graded nanobeams on nonlinear elastic foundation vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab5e50
  2. Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates vol.279, 2019, https://doi.org/10.1016/j.compstruct.2021.114795