DOI QR코드

DOI QR Code

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • 투고 : 2018.07.07
  • 심사 : 2018.12.20
  • 발행 : 2019.01.25

초록

Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

키워드

과제정보

연구 과제 주관 기관 : VIEP-BUAP

참고문헌

  1. Ali, A.M., Emanuelsson, E.A.C. and Patterson, D.A. (2011), "Conventional versus lattice photocatalysed reactions: Implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254 nm and 340 nm", Appl. Catal. B: Environ., 106, 323-336. https://doi.org/10.1016/j.apcatb.2011.05.033
  2. Anuchai, S., Phanichphant, S., Tantraviwat, D., Pluengphon, P., Bovornratanaraks, T. and Inceesungvorn, B. (2018), "Low temperature preparation of oxygen-deficient tin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement", J. Colloid Interf. Sci., 512, 105-114. https://doi.org/10.1016/j.jcis.2017.10.047
  3. Babu, B., Kadam, A.N., Ravikumar, R.V.S.S.N. and Byon, C. (2017), "Enhanced visible light photocatalytic activity of Cudoped $SnO_2$ quantum dots by solution combustion synthesis", J. Alloys Compd., 703, 330-336. https://doi.org/10.1016/j.jallcom.2017.01.311
  4. Bouaine, A., Brihi, N., Schmerber, G., Ulhaq-Bouillet, C., Colis, S. and Dinia, A. (2007), "Structural, Optical, and Magnetic Properties of Co-doped $SnO_2$ Powders Synthesized by the Coprecipitation Technique", J. Phys. Chem. C, 111(7), 2924-2928. https://doi.org/10.1021/jp066897p
  5. Busca, G. and Lorenlleli, V. (1982), "Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces", Mater. Chem., 7(1), 89-126. https://doi.org/10.1016/0390-6035(82)90059-1
  6. Carreno, N.L.V., Fajardo, H.V., Maciel, A.P., Valentini, A., Pontes, F.M., Probst, L.F.D., Leite, E.R. and Longo, E. (2004), "Selective synthesis of vinyl ketone over $SnO_2$ nanoparticle catalysts doped with rare earths", J. Mol. Catal. A: Chem., 207(1), 91-96. https://doi.org/10.1016/S1381-1169(03)00496-5
  7. Chen, H., Ding, L., Sun, W., Jiang, Q., Hu, J. and Li, J. (2015), "Synthesis and characterization of Ni doped $SnO_2$ microspheres with enhanced visible-light photocatalytic activity", RSC Adv., 5, 56401-56409. https://doi.org/10.1039/C5RA10268E
  8. Cheng, L., Shao, M.-W., Chen, D., Mac, D.D.D. and Lee, S.-T. (2010), "$SnO_2$ nanowires with strong yellow emission and their application in photoswitches", Cryst. Eng. Comm., 12, 1536-1539. https://doi.org/10.1039/b911664h
  9. Choi, Y.-J., Hwang, I.-S., Park, J.-G., Choi, K.J., Park, J.-H. and Lee, J.-H. (2008), "Novel fabrication of an $SnO_2$ nanowire gas sensor with high sensitivity", Nanotechnol., 19(9), 095508. https://doi.org/10.1088/0957-4484/19/9/095508
  10. Dieguez, A., Romano-Rodriguez, A., Vila, A. and Morante, J.R. (2001), "The complete Raman spectrum of nanometric $SnO_2$ particles", J. Appl. Phys., 90, 1550-1557. https://doi.org/10.1063/1.1385573
  11. Escobedo Morales, A., Sanchez Mora, E. and Pal, U. (2007), "Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures", Rev. Mex. Fis., S53(5), 18-22.
  12. Flores, N.M., Pal, U., Galeazzi, R. and Sandoval, A. (2014), "Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures", RSC Adv., 4, 41099-41110. https://doi.org/10.1039/C4RA04522J
  13. Garcia-Tecedor, M., Maestre, D., Cremades, A. and Piqueras, J. (2016), "Influence of Cr Doping on the Morphology and Luminescence of SnO2 Nanostructures", J. Phys. Chem. C, 120(38), 22028-22034. https://doi.org/10.1021/acs.jpcc.6b06682
  14. Gu, F., Wang, S., Cao, H. and Li, C. (2008), "Synthesis and optical properties of $SnO_2$ nanorods", Nanotechnol., 19(9), 095708. https://doi.org/10.1088/0957-4484/19/9/095708
  15. Guan, Y., Wang, D., Zhou, X., Sun, P., Wang, H., Ma, J. and Lu, G. (2014), "Hydrothermal preparation and gas sensing properties of Zn-doped $SnO_2$ hierarchical architectures", Sens. Actuat. B: Chem., 191, 45-52. https://doi.org/10.1016/j.snb.2013.09.002
  16. Han, S., Jang, B., Kim, T., Oh, S.M. and Hyeon, T. (2005), "Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes", Adv. Funct. Mater., 15, 1845-1850. https://doi.org/10.1002/adfm.200500243
  17. Higler, R. and Sprake, J. (2017), "Doping colloidal bcc crystals - interstitial solids and meta-stable clusters", Sci. Rep., 7, 12634. https://doi.org/10.1038/s41598-017-12730-8
  18. Horvath, E., Kristof, J., Nasser, H., Frost, R.L., De Basattisti, A. and Redey, A. (2005), "Investigation of $SnO_2$ thin film evolution by thermoanalytical and spectroscopic methods", Appl. Surf. Sci., 242, 13-20. https://doi.org/10.1016/j.apsusc.2004.07.063
  19. Huang, H., Tan, O.K., Lee, Y.C., Tran, T.D., Tse, M.S. and Yao, X. (2005), "Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition", Appl. Phys. Lett., 87, p. 163123. https://doi.org/10.1063/1.2106006
  20. Jean, S.-T. and Her, Y.-C. (2009), "Synthesis of Sb-additivated $SnO_2$ nanostructures and dependence of photoluminescence properties on Sb additivation concentration", J. Appl. Phys., 105, 024310. https://doi.org/10.1063/1.3068487
  21. Ji, Z., Zhao, L., He, Z., Zhou, Q. and Chen, C. (2006), "Transparent p-type conducting indium-doped $SnO_2$ thin films deposited by spray pyrolysis", Mater. Lett., 60, 1387-1389. https://doi.org/10.1016/j.matlet.2005.11.057
  22. Kansal, S.K., Singh, M. and Sud, D. (2007), "Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts", J. Hazard. Mater., 141(3), 581-590. https://doi.org/10.1016/j.jhazmat.2006.07.035
  23. Kou, X., Wang, C., Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y. and Lu, G. (2016), "Synthesis of Co-doped $SnO_2$ nanofibers and their enhanced gas-sensing properties", Sens. Actuat. B: Chem., 236, 425-432. https://doi.org/10.1016/j.snb.2016.06.006
  24. Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z. and Xin, X. (2002), "One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles", Sens. Actuat. B, 81, 165-169. https://doi.org/10.1016/S0925-4005(01)00947-9
  25. Li, W.-T., Zhang, X.-D. and Guo, X. (2017), "Electrospun Nidoped $SnO_2$ nanofiber array for selective sensing of $NO_2$", Sens. Actuat. B: Chem., 244, 509-521. https://doi.org/10.1016/j.snb.2017.01.022
  26. Liu, L.Z., Wu, X.L., Gao, F., Shen, J.C., Li, T.H. and Chu, P.K. (2011), "Determination of surface oxygen vacancy position in $SnO_2$ nanocrystals by Raman spectroscopy", Solid St. Commun., 151(11), 811-814. https://doi.org/10.1016/j.ssc.2011.03.029
  27. Marban, G., Vu, T.T. and Valdes-Solis, T. (2011), "A simple visible spectrum deconvolution technique to prevent the artefact induced by the hypsochromic shift from masking the concentration of methylene blue in photodegradation experiments", Appl. Catal. A: General, 402, 218-223. https://doi.org/10.1016/j.apcata.2011.06.009
  28. Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U. and Sunkara, M.K. (2009), "Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries", Nano Lett., 9(2), 612-616. https://doi.org/10.1021/nl802864a
  29. Mondal, S., De Anda Reyes Ma, E. and Pal, U. (2017), "Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light", RSC Adv., 7, 8633-8645. https://doi.org/10.1039/C6RA28640B
  30. Peche-Herrero, M.A., Maestre, D., Ramirez-Castellanos, J., Cremades, A., Piqueras, J. and Gonzalez-Calbeta, J.M. (2014), "The controlled transition-metal doping of $SnO_2$ nanoparticles with tunable luminescence", Cryst. Eng. Comm., 16, 2969-2976. https://doi.org/10.1039/c3ce42188k
  31. Reddy, C.V., Babu, B. and Shim, J. (2017), "Synthesis of Cr-doped $SnO_2$ quantum dots and its enhanced photocatalytic activity", Mater. Sci. Eng. B, 223, 131-142. https://doi.org/10.1016/j.mseb.2017.06.007
  32. Reddy, C.V., Babu, B., Vattikuti, S.V.P., Ravikumar, R.V.S.S.N. and Shim, J. (2016), "Structural and optical properties of vanadium doped $SnO_2$ nanoparticles with high photocatalytic activities", J. Lumin., 179, 26-34. https://doi.org/10.1016/j.jlumin.2016.06.036
  33. Sanchez Zeferino, R., Pal, U., Melendrez, R., Duran-Munoz, H.A. and Barboza Flores, M. (2013), "Dose enhancing behavior of hydrothermally grown Eu-doped $SnO_2$ nanoparticles", J. Appl. Phys., 113, p. 064306. https://doi.org/10.1063/1.4790486
  34. Shaalan, N.M., Hamad, D., Abdel-Latief, A.Y. and Abdel-Rahim, M.A. (2016), "Preparation of quantum size of tin oxide: Structural and physical characterization", Prog. Nat. Sci. Mater. Inter., 26(2), 145-151. https://doi.org/10.1016/j.pnsc.2016.03.002
  35. Shang, G., Wu, J., Huang, M., Lin, J., Lan, Z., Huang, Y. and Fan, L. (2012), "Facile Synthesis of Mesoporous Tin Oxide Spheres and Their Applications in Dye-Sensitized Solar Cells", J. Phys. Chem. C, 116(38), 20140-20145. https://doi.org/10.1021/jp304185q
  36. Shanmugam, N., Sathya, T., Viruthagiri, G., Kalyanasundaram, C., Gobi, R. and Ragupathy, S. (2016), "Photocatalytic degradation of brilliant green using undoped and Zn doped $SnO_2$ nanoparticles under sunlight irradiation", Appl. Surf. Sci., 360, 283-290. https://doi.org/10.1016/j.apsusc.2015.11.008
  37. Shi, W., Song, S. and Zhang, H. (2013), "Hydrothermal synthetic strategies of inorganic semiconducting nanostructures", Chem. Soc. Rev., 42, 5714-5743. https://doi.org/10.1039/c3cs60012b
  38. Singh, M.K., Mathpa, M.C. and Agarwal, A. (2012), "Optical properties of $SnO_2$ quantum dots synthesized by laser ablation in liquid", Chem. Phys. Lett., 536, 87-91. https://doi.org/10.1016/j.cplett.2012.03.084
  39. Sun, P., Zhou, X., Wang, C., Wang, B., Xu, X. and Lu, G. (2014), "One-step synthesis and gas sensing properties of hierarchical Cd-doped $SnO_2$ nanostructures", Sens. Actuat. B: Chem., 190, 32-39. https://doi.org/10.1016/j.snb.2013.08.045
  40. Tadeev, A.V., Delabouglise, G. and Labeau, M. (1999), "Sensor properties of Pt doped $SnO_2$ thin films for detecting CO", Thin Solid Films, 337, 163-165. https://doi.org/10.1016/S0040-6090(98)01392-3
  41. Teresa, O. (2017), "Effect of Double Schottky Barrier in Gallium-Zinc-Oxide Thin Film", Trans. Electr. Electron. Mater., 18(6), 323-329. https://doi.org/10.4313/TEEM.2017.18.6.323
  42. Tran, V.-H., Ambade, R.B., Ambade, S.B., Lee, S.-H. and Lee, I.-H. (2017), "Low-temperature solution-processed $SnO_2$ nanoparticles as a cathode buffer layer for inverted organic solar cells", ACS Appl. Mater. Interfaces, 9, 1645-1653. https://doi.org/10.1021/acsami.6b10857
  43. Vignesh, K., Hariharan, R., Rajarajan, M. and Suganthi, A. (2013), "Photocatalytic performance of Ag doped $SnO_2$ nanoparticles modified with curcumin", Solid State Sci., 21, 91-99. https://doi.org/10.1016/j.solidstatesciences.2013.04.017
  44. Wager, J.F. (2003), "Transparent electronics", Science, 300, 1245. https://doi.org/10.1126/science.1085276
  45. Wang, H. and Rogach, A.L. (2014), "Hierarchical $SnO_2$ Nanostructures: Recent Advances in Design, Synthesis, and Applications", Chem. Mater., 26(1), 123-133. https://doi.org/10.1021/cm4018248
  46. Wang, J.-J., Lv, A.-F., Wang, Y.-Q., Cui, B., Yan, H.-J., Hu, J.-S., Hu, W.-P., Guo, Y.-G. and Wan, L-J. (2013), "Integrated Prototype Nanodevices via $SnO_2$ Nanoparticles Decorated SnSe Nanosheets", Scientific Reports, 3, p. 2613. https://doi.org/10.1038/srep02613
  47. Xiang, X., Zu, X.T., Zhu, S., Wang, L.M., Shutthanandan, V., Nachimuthu, P. and Zhang, Y. (2008), "Photoluminescence of $SnO_2$ nanoparticles embedded in $Al_2O_3$", J. Phys. D: Appl. Phys., 41, p. 225102. https://doi.org/10.1088/0022-3727/41/22/225102
  48. Yanes, A.C., Mendez Ramos, J., del-Castillo, J., Velazquez, J.J. and Rodriguez, V.D. (2010), "Size-dependent luminescence of $Sm^{3+}$ doped $SnO_2$ nano-particles dispersed in sol-gel silica glass", Appl. Phys. B, 101(4), 849-854. https://doi.org/10.1007/s00340-010-4331-0
  49. Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N. (2001), "Photooxidative N-demethylation of methylene blue in aqueous $TiO_2$ dispersions under UV irradiation", J. Photochem. Photobiol. A: Chem., 140, 163-172. https://doi.org/10.1016/S1010-6030(01)00398-7
  50. Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L. and Liu, R. (2014), "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods", Sci. Rep., 4, p. 4596. https://doi.org/10.1038/srep04596
  51. Zhou, G., Ni, S., Sun, X., Wang, X., Wang, Q. and He, D. (2011), "Visible photoluminescence of hydrothermal synthesized $Sn_{1-x}Ni_xO_2$ nanostructures", J. Mater. Sci: Mater. Electron., 22, 174-178. https://doi.org/10.1007/s10854-010-0109-8
  52. Zuo, J., Xu, C., Liu, X., Wang, C., Wang, C., Hu, Y. and Qian, Y. (1994), "Study of the Raman spectrum of nanometer $SnO_2$", J. Appl. Phys., 75, 1835-1836. https://doi.org/10.1063/1.356348