DOI QR코드

DOI QR Code

Future water quality analysis of the Anseongcheon River basin, Korea under climate change

  • Received : 2018.05.21
  • Accepted : 2018.09.15
  • Published : 2019.01.25

Abstract

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.

Keywords

Acknowledgement

Supported by : Korea Agency for Infrastructure Technology Advancement (KAIA)

References

  1. Altenburger, R., Ait-Aissa, S., Antczak, P., Backhaus, T., Barcelo, D., Seiler, T.B., Brion, F., Busch, W., Chipman, K., de Alda, M.L., de Aragao Umbuzeiro, G., Escher, B.I., Falciani, F., Faust, M., Focks, A., Hilscherova, K., Hollender, J., Hollert, H., Jager, F., Jahnke, A., Kortenkamp, A., Krauss, M., Lemkine, G.F., Munthe, J., Neumann, S., Schymanski, E.L., Scrimshaw, M., Segner, H., Slobodnik, J., Smedes, F., Kughathas, S., Teodorovic, I., Tindall, A.J., Tollefsen, K.E., Walz, K.H., Williams, T.D., Van den Brink, P.J., van Gils, J., Vrana, B., Zhang, X. and Brack, W. (2015), "Future water quality monitoring-Adapting tools to deal with mixtures of pollutants in water resource management", Sci. Total Environ., 512-513, 540-551. https://doi.org/10.1016/j.scitotenv.2014.12.057
  2. Attah, D.A. and Bankole, G.M. (2012), "Time series analysis model for annual rainfall data in Lower Kaduna Catchment Kaduna, Nigeria", Int. J. Res. Chem. Environ., 2(1), 82-87.
  3. Bates, B.C., Kundzewicz, Z.W., Wu, S. and Palutikof, J.P. (2008), "Climate change and water", Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva.
  4. Bouraoui, F., Galbiati, L. and Bidoglio, G. (2002), "Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK)", Hydrol. Earth Syst. Sci., 6(2), 197-209. https://doi.org/10.5194/hess-6-197-2002
  5. Bouraoui, F., Grizzetti, B., Granlund, K., Rekolainen, S. and Bidoglio, G. (2004), "Impact of climate change on the water cycle and nutrient losses in a Finnish catchment", Climatic Change, 66(1-2), 109-126. https://doi.org/10.1023/B:CLIM.0000043147.09365.e3
  6. Brunetti, M., Maugeri, M. and Nanni, T. (2001), "Changes in total precipitation, rainy days and extreme events in northeastern Italy", Int. J. Climatol., 21, 861-871. https://doi.org/10.1002/joc.660
  7. Chenini, I. and Khemiri, S. (2009), "Evaluation of ground water quality using multiple linear regression and structural equation modeling", Int. J. Environ. Sci. Tech., 6(3), 509-519. https://doi.org/10.1007/BF03326090
  8. Damodhar, U. and Reddy, M.V. (2013), "Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India: A case study", Appl. Water Sci., 3(2), 501-514. https://doi.org/10.1007/s13201-013-0098-x
  9. Delpla, I., Jung, A.V., Baures, E., Clement, M. and Thomas, O. (2009), "Impacts of climate change on surface water quality in relation to drinking water production", Environ. Int., 35(8), 1225-1233. https://doi.org/10.1016/j.envint.2009.07.001
  10. Huang, F., Wang, X., Lou, L., Zhou, Z. and Wu, J. (2010), "Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques", Water Res., 44(5), 1562-1572. https://doi.org/10.1016/j.watres.2009.11.003
  11. Jiang, Y., Nan, Z. and Yang, S. (2013), "Risk assessment of water quality using Monte Carlo simulation and artificial neural network method", J. Environ. Manage., 122, 130-136. https://doi.org/10.1016/j.jenvman.2013.03.015
  12. Kim, S., Noh, H.S., Hong, S.J., Kwak, J.W. and Kim, H.S. (2013), "Impact of climate change on habitat of the Rhynchocypris kumgangensis in Pyungchang River", J. Wetlands Res., 15(2), 271-280. https://doi.org/10.17663/JWR.2013.15.2.271
  13. Kim, Y.S., Kim, S.J. and Kim, H.S. (2011), "Analysis of water quality characteristics using simulated long-term runoff by HEC-HMS model and EFDC model", J. Wetlands Res., 13(3), 707-720. https://doi.org/10.17663/JWR.2011.13.3.707
  14. Kite, G.W. (2008), Manual for the SLURP Hydrological Model Version 12.2, HydroLogic Solutions, Bournemouth, England.
  15. Nearing, M.A., Jetten, V.G., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M.H., Nunes, J.P., Renschler, C.S., Souchere, V. and van Oost, K. (2005), "Modeling response of soil erosion and runoff to changes in precipitation and cover", Catena, 61(2-3), 131-154. https://doi.org/10.1016/j.catena.2005.03.007
  16. Palani, S., Liong, S.Y. and Tkalich, P. (2008), "An ANN application for water quality forecasting", Mar. Pollut. Bull., 56(9), 1586-1597. https://doi.org/10.1016/j.marpolbul.2008.05.021
  17. Park, J.H., Duan, L., Kim, B., Mitchell, M.J. and Shibata, H. (2010), "Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia", Environ. Int., 36(2), 212-225. https://doi.org/10.1016/j.envint.2009.10.008
  18. Parmar, K.S. and Bhardwaj, R. (2014), "Water quality management using statistical analysis and time-series prediction model", Appl. Water Sci., 4(4), 425-434. https://doi.org/10.1007/s13201-014-0159-9
  19. Parmar, K.S. and Bhardwaj, R. (2013a), "Water quality index and fractal dimension analysis of water parameters", Int. J. Environ. Sci. Technol., 10(1), 151-164. https://doi.org/10.1007/s13762-012-0086-y
  20. Parmar, K.S. and Bhardwaj, R. (2013b), "Wavelet and statistical analysis of river water quality parameters", Appl. Math. Comput., 219(20), 10172-10182. https://doi.org/10.1016/j.amc.2013.03.109
  21. Prasad, B., Kumari, P., Bano, S. and Kumari, S. (2013), "Ground water quality evaluation near mining area and development of heavy metal pollution index", Appl. Water Sci., 4(1), 11-17. https://doi.org/10.1007/s13201-013-0126-x
  22. Prathumratana, L., Sthiannopkao, S. and Kim, K.W. (2008), "The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River", Environ. Int., 34(6), 860-866. https://doi.org/10.1016/j.envint.2007.10.011
  23. Rehana, S. and Mujumdar, P.P. (2012), "Climate change induced risk in water quality control problems", J. Hydrol., 444-445, 63-77. https://doi.org/10.1016/j.jhydrol.2012.03.042
  24. Seth, R., Singh, P., Mohan, M., Singh, R. and Aswal, R.S. (2013), "Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India)", Appl. Water Sci., 3(4), 717-720. https://doi.org/10.1007/s13201-013-0116-z
  25. Su, S., Li, D., Zhang, Q., Xiao, R., Huang, F. and Wu, J. (2011), "Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China", Water Res., 45(4), 1781-1795. https://doi.org/10.1016/j.watres.2010.11.030
  26. van Vliet, M.T.H. and Zwolsman, J.J.G. (2008), "Impact of summer droughts on the water quality of the Meuse river", J. Hydrol., 353(1), 1-17. https://doi.org/10.1016/j.jhydrol.2008.01.001
  27. Varanou, E., Gkouvatsou, E., Baltas, E. and Mimikou, M. (2002), "Quantity and quality integrated catchment modelling under climate change with use of soil and water assessment tool model", J. Hydrol. Eng., 7(3), 228-244. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:3(228)

Cited by

  1. Prioritizing water distribution pipe renewal based on seismic risk and construction cost vol.12, pp.5, 2019, https://doi.org/10.12989/mwt.2021.12.5.195