DOI QR코드

DOI QR Code

Behavior of steel-concrete composite beam using angle shear connectors at fire condition

  • Received : 2018.06.26
  • Accepted : 2019.01.11
  • Published : 2019.01.25

Abstract

Fire is one of the environmental parameters affecting the structure causing element internal forces to change, as well as reducing the strength of the materials. One of the common types of floors in tall steel structures is the steel concrete composite slab. Shear connectors are used in steel and concrete composite beam in various shapes also has played significant role in a burning fire event of building with a steel concrete composite beam. The current study has reviewed the effects of temperature raising on the angle connector behavior through the use of push out tests and monotonic static force. The results have shown (1) the ductility of the samples is acceptable based on EC4 standard; (2) temperature raising has reduced the stiffness; (3) the shear ductility increment; and (4) the shear capacity reduction. Also, the amount of angle shear connector resistance has been decreased from 18.5% to 41% at ambient temperature up to $850^{\circ}C$.

Keywords

References

  1. Andalib, Z., Kafi, M.A., Bazzaz, M. and Momenzadeh, S. (2018), "Numerical evaluation of ductility and energy absorption of steel rings constructed from plates", Eng. Struct., 169, 94-106. https://doi.org/10.1016/j.engstruct.2018.05.034
  2. Balasubramanian, R. and Rajaram, B. (2016), "Study on behaviour of angle shear connector in steel- concrete composite structures", Int. J. Steel Struct., 16(3), 807-811. https://doi.org/10.1007/s13296-015-0094-0
  3. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2011), "Evaluating the performance of steel ring in special bracing frame", Proceedings of the 6th Seismology and Earthquake Engineering International Conference, Ministry of Science, Research and Technology.
  4. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012), "Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames", Steel Compos. Struct., Int. J., 12(5), 445-464. https://doi.org/10.12989/scs.2012.12.5.445
  5. Bazzaz, M., Andalib, Z., Kheyroddin, A. and Kafi, M.A. (2015), "Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system", Steel Compos. Struct., Int. J., 19(4), 917-937. https://doi.org/10.12989/scs.2015.19.4.917
  6. Candido-Martins, J.P.S., Costa-Neves, L.F. and Vellasco, P.D.S. (2010), "Experimental evaluation of the structural response of Perfobond shear connectors", Eng. Struct., 32(8), 1976-1985. https://doi.org/10.1016/j.engstruct.2010.02.031
  7. Chen, L., Li, G. and Jiang, S. (2012), "Experimental studies on the behavior of headed studs shear connectors at elevated temperatures", Proceedings of the 7th International Conference on Steel & Aluminum Structures, Kuching, Sarawak, Malaysia.
  8. Chen, L.Z., Ranzi, G., Jiang, S.C., Tahmasebinia, F. and Li, G.Q. (2015), "Behaviour and design of shear connectors in composite slabs at elevated temperatures", Constructional Steel Research, 115, 387-397. https://doi.org/10.1016/j.jcsr.2015.08.025
  9. Choi, S.K., Han, S.H., Nadjai, A., Ali, F., Kim, S.B. and Choi, J. (2009), "Performance of shear studs in fire", Applications of Structural Fire Engineering Czech Technical University, Prague, Czech Republic. pp. 490-495.
  10. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., Int. J., 19(2), 485-501. https://doi.org/10.12989/scs.2015.19.2.485
  11. Gelfi, P., Giuriani, E. and Marini, A. (2002), "Stud shear connection design for composite concrete slab and wood beams", Struct. Eng., 128, 1544-1550. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1544)
  12. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., Int. J., 26(4), 485-499.
  13. Ingberg, S. (1928), "Tests of the severity of building fires", NFPA Quarterly, 22(1), 43-61.
  14. Khalilian, M. (2015), "Angle shear connectors capacity", Modares Civil Eng. J., 15(3), 51-62.
  15. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., Int. J., 63(2), 259-268
  16. Khorramian, K., Maleki, S., Shariati, M. and Sulong, N.R. (2015), "Behavior of tilted angle shear connectors", PLoS one, 10(12), 1-11.
  17. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
  18. Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", Struct. Eng., 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
  19. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges", Constr. Steel Res., 61(9), 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007
  20. Lennon, T., Moore, D.B. and Bailey, C. (1999), "The behaviour of full-scale steel- framed buildings subjected to compartment fires", Struct. Engr., 77(8), 15-21.
  21. Lu, W., Ma, Z., Makelainen, P. and Outinen, J. (2012), "Behaviour of shear connectors in cold-formed steel sheeting at ambient and elevated temperatures", Thin-Wall. Struct., 61, 229-238. https://doi.org/10.1016/j.tws.2012.04.008
  22. Maleki, S. and Bagheri, S. (2008), "Behavior of channel shear connectors, Part I: Experimental study", Constr. Steel Res., 64(2), 1333-1340. https://doi.org/10.1016/j.jcsr.2008.01.010
  23. Maleki, S. and Mahoutian, M. (2009), "Experimental and analytical study on channel shear connectors in fiber-reinforced concrete", Constr. Steel Res., 65(8-9), 1787-1793. https://doi.org/10.1016/j.jcsr.2009.04.008
  24. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intel. Manuf., 1-11.
  25. Mirza, O. and Uy, B. (2009), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", Constr. Steel Res., 65(3), 662-674. https://doi.org/10.1016/j.jcsr.2008.03.008
  26. Moradi, M., Valipour, H., Foster, S.J. and Bradford, M.A. (2016), "Deconstructable steel-fibre reinforced concrete deck slabs with a transverse confining system", Mater. Des., 89, 1007-1019. https://doi.org/10.1016/j.matdes.2015.10.059
  27. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., Int. J., 27(5), 537-543.
  28. Oguejiofor, E. and Hosain, M. (1994), "A parametric study of perfobond rib shear connectors", Can. J. Civil Eng., 21(4), 614-625. https://doi.org/10.1139/l94-063
  29. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-64.
  30. Paknahad, M., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., Int. J., 28(4), 483-494.
  31. Pashan, A. (2006), "Behaviour of channel shear connectors: pushout tests", Doctoral Dissertation; Saskatchewan, Canada.
  32. Quevedo, R.L. and Silva, V.P. (2013), "Thermal analysis of pushout tests at elevated temperatures", Fire Safety, 55, 1-14. https://doi.org/10.1016/j.firesaf.2012.08.009
  33. Rodrigues, J.P.C. and Laim, L. (2011), "Behaviour of Perfobond shear connectors at high temperatures", Eng. Struct., 33(10), 2744-2753. https://doi.org/10.1016/j.engstruct.2011.05.004
  34. Rodrigues, J.P.C. and Laim, L. (2014), "Experimental investigation on the structural response of T, T- block and T-Perfobond shear connectors at elevated temperatures", Eng. Struct., 75, 299-314. https://doi.org/10.1016/j.engstruct.2014.06.016
  35. Sadeghi Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424.
  36. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  37. Sedghi, Y., Zandi, Y., Toghroli, A., Safa, M., Mohamad, E.T., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., Int. J., 22(3), 335-340.
  38. Shahabi, S.E.M., Sulong, N.H., Shariati, M., Mohammadhassani, M. and Shah, S.N.R. (2016a), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., Int. J., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651
  39. Shahabi, S., Sulong, N., Shariati, M. and Shah, S. (2016b), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., Int. J., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185
  40. Shariati, M. (2013a), "Behaviour of C-shaped shear connectors in steel concrete composite beams", Ph.D. Thesis; Faculty of engineering University of Malaya, Kuala Lumpur, Malaysia.
  41. Shariati, M. (2013b), "Behaviour of C-shaped Shear Connectors in Steel Concrete Composite Beams", Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya.
  42. Shariati, A. (2014), "Behaviour of C-shaped Angle Shear Connectors in High Strength Concrete", M.Sc., Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya.
  43. Shariati, M., Ramli Sulong, N.H., Maleki, S. and Arabnejad Kh, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
  44. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Khanouki, A., Mehdi, M. and Shafigh, P. (2011a), "Behavior of channel shear connectors in normal and light weight aggregate concrete (experimental and analytical study)", Adv. Mater. Res., 168, 2303-2307. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2303
  45. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Shariati, A. (2011b), "Experimental and numerical investigations of channel shear connectors in high strength concrete", Proceedings of the 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM'11+), Seoul, South Korea, August.
  46. Shariati, M., Sulong, N.R., Kh, M.A. and Mahoutian, M. (2011c), "Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete", Sci. Res. Essays, 6(4), 977-983.
  47. Shariati, M., Sulong, N.R., Suhatril, M., Shariati, A., Khanouki, M.A. and Sinaei, H. (2012a), "Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study", Mater. Des., 41, 67-73. https://doi.org/10.1016/j.matdes.2012.04.039
  48. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012b), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008
  49. Shariati, M., Ramli Sulong, N., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. and Sinaei, H. (2012c), "Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders", Proceedings of the 5th International Conference on Engineering Failure Analysis, Hilton Hotel, The Hague, The Netherlands, July.
  50. Shariati, A., Sulong, N.R., Suhatril, M. and Shariati, M. (2012d), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831.
  51. Shariati, A., Ramli Sulong, N.H. and Shariati, M. (2012e), "Various types of shear connectors in composite structures: A review", Int. J. Phys. Sci., 7(22), 2876-2890.
  52. Shariati, M., Sulong, N.R., Suhatril, M., Shariati, A., Khanouki, M.A. and Sinaei, H. (2013), "Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading", Constr. Build. Mater., 38, 582-593. https://doi.org/10.1016/j.conbuildmat.2012.07.050
  53. Shariati, A., Shariati, M., Sulong, N.R., Suhatril, M., Khanouki, M.A. and Mahoutian, M. (2014a), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Constr. Build. Mater., 52, 276-283. https://doi.org/10.1016/j.conbuildmat.2013.11.036
  54. Shariati, M., Shariati, A., Sulong, N.R., Suhatril, M. and Khanouki, M.A. (2014b), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134. https://doi.org/10.1016/j.engfailanal.2014.02.017
  55. Shariati, M., Sulong, N.R., Shariati, A. and Khanouki, M.A. (2015), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 49(9), 3909-3926.
  56. Shariati, M., Sulong, N.R., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102
  57. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2017, Zurich, Switzerland.
  58. Soty, R. and Shima, H. (2013), "Formulation for shear force-relative displacement relationship of L-shape shear connector in steel-concrete composite structures", Eng. Struct., 46, 581-592. https://doi.org/10.1016/j.engstruct.2012.09.003
  59. Tahmasbi, F., Maleki, S., Shariati, M., Sulong, N.R. and Tahir, M.M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", PloS one, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989
  60. Tahmasebinia, F., Ranzi, G. and Zona, A. (2012), "Beam tests of composite steel-concrete members: A three-dimensional finite element model", Int. J. Steel Struct., 12(1), 37-45. https://doi.org/10.1007/s13296-012-1004-3
  61. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  62. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intel. Manuf., 29(8), 1793-1801. https://doi.org/10.1007/s10845-016-1217-y
  63. Valente, I. and Cruz, P. (2004), "Experimental analysis of Perfobond shear connection between steel and lightweight concrete", Constr. Steel Res., 60(3-5), 465-479. https://doi.org/10.1016/S0143-974X(03)00124-X
  64. Wei, X. and Xiao, L. (2013), "Mechanical behaviour and failure mechanism of perfobond shear connectors in steel-concrete hybrid structure", IABSE Symposium Report; International Association for Bridge and Structural Engineering.
  65. Wei, X., Xiao, L. and Pei, S. (2017), "Experiment study on fatigue performance of perforated shear connectors", Int. J. Steel Struct., 17(3), 957-967. https://doi.org/10.1007/s13296-017-9008-7
  66. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., Int. J., 27(3), 389-399.
  67. Yasuda, S., Michikoshi, S., Kobayashi, Y. and Narihara, H. (2008), "Experimental study on shear strength of headed stud shear connectors at high temperature", Struct. Constr. Eng., 73(630), 1417-1433. [In Japanese] https://doi.org/10.3130/aijs.73.1417
  68. Zhao, B. and Kruppa, J. (1995), Fire Resistance of Composite Slabs With Profiled Steel Sheet and of Composite Steel Concrete Beams, EU, EU publications.

Cited by

  1. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2019, https://doi.org/10.12989/scs.2020.34.1.155
  2. Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines vol.34, pp.3, 2019, https://doi.org/10.12989/scs.2020.34.3.347
  3. Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines vol.34, pp.3, 2019, https://doi.org/10.12989/scs.2020.34.3.377
  4. Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2019, https://doi.org/10.12989/scs.2020.34.3.409
  5. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.743
  6. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.355
  7. Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.237
  8. Effect of progressive shear punch of a foundation on a reinforced concrete building behavior vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.279
  9. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2019, https://doi.org/10.12989/acc.2020.10.5.393
  10. Long-term deflection prediction in steel-concrete composite beams vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.021
  11. Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
  12. Smart estimation of automatic approach in enhancing the road safety under AASHTO Standard specification and STM vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.389
  13. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2019, https://doi.org/10.12989/sss.2021.28.2.167
  14. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.853
  15. Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures vol.278, 2019, https://doi.org/10.1016/j.compstruct.2021.114524