References
- Abo Dhaheer, M.S., Al-Rubaye, M.M., Alyhya, W.S., Karihaloo, B.L. and Kulasegaram, S. (2016), "Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: Part I-mix design procedure", J. Sustain. Cement-Bas. Mater., 5(4), 199-216. https://doi.org/10.1080/21650373.2015.1039625
- Abo Dhaheer, M.S., Al-Rubaye, M.M., Alyhya, W.S., Karihaloo, B.L. and Kulasegaram, S. (2016), "Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: Part II-experimental validation", J. Sustain. Cement-Bas. Mater., 5(4), 217-232. https://doi.org/10.1080/21650373.2015.1036952
- ASTM (American Society for Testing and Materials) (2014), C 1621/C 1621M: Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring.
- Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of Portland cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5
- Beycioglu, A. and Aruntas, H.Y. (2014), "Workability and mechanical properties of self-compacting concretes containing LLFA, GBFS and MC", Constr. Build. Mater., 73, 626-635. https://doi.org/10.1016/j.conbuildmat.2014.09.071
- BIS (Bureau of Indian Standards) (1970), 383: Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, India.
- Boukendakdji, O., Kadri, E.H. and Kenai, S. (2012), "Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete", Cement Concrete Compos., 34(4), 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013
- Chen, Y.Y., Tuan, B.L.A. and Hwang, C.L. (2013), "Effect of paste amount on the properties of self-consolidating concrete containing fly ash and slag", Constr. Build. Mater., 47, 340-346. https://doi.org/10.1016/j.conbuildmat.2013.05.050
- Chow, R.K., Yip, S.W. and Kwan, A.K. (2013), "Processing crushed rock fine to produce manufactured sand for improving overall performance of concrete", HKIE Tran., 20(4), 240-249. https://doi.org/10.1080/1023697X.2013.861186
- Concrete fact sheet, www.nrmca.org. (Browsed on 27/10/2016)
- Corinaldesi, V. and Moriconi, G. (2011), "The role of industrial by-products in self-compacting concrete", Constr. Build. Mater., 25(8), 3181-3186. https://doi.org/10.1016/j.conbuildmat.2011.03.001
- Dinakar, P., Sethy, K.P. and Sahoo, U.C. (2013), "Design of self-compacting concrete with ground granulated blast furnace slag", Mater. Des., 43, 161-169. https://doi.org/10.1016/j.matdes.2012.06.049
- Dransfield, J. (2003), "Mortar and grout", Advanced Concrete Technology 1: Constituent Materials, 69.
- EFNARC, S. (2002), Guidelines for Self-Compacting Concrete, EFNARC, UK.
- Fathi, H. and Lameie, T. (2017), "Effect of aggregate type on heated self-compacting concrete", Comput. Concrete, 19(5), 33-39. https://doi.org/10.12989/cac.2017.19.1.033
- Ferraris, C.F., Brower, L.E. and Banfill, P. (2001), "Comparison of Concrete Rheometers: International Test at LCPC (Nantes, France) in October", National Institute of Standards and Technology, Gaithersburg, MD, USA.
- Gandage, A.S., Rao, V.V., Sivakumar, M.V.N., Vasan, A., Venu, M. and Yaswanth, A.B. (2013), "Effect of perlite on thermal conductivity of Self-Compacting Concrete", Procedia-Soc. Behav. Sci., 104, 188-197. https://doi.org/10.1016/j.sbspro.2013.11.111
- Gesoglu, M., Guneyisi, E. and Ozbay, E. (2009), "Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume", Constr. Build. Mater., 23(5), 1847-1854. https://doi.org/10.1016/j.conbuildmat.2008.09.015
- Ghanbari, A. and Karihaloo, B.L. (2009), "Prediction of the plastic viscosity of self-compacting steel fibre reinforced concrete", Cement Concrete Res., 39(12), 1209-1216. https://doi.org/10.1016/j.cemconres.2009.08.018
- Hocevar, A., Kavcic, F. and Bokan-Bosiljkov, V. (2012), "Rheological parameters of fresh concrete-comparison of rheometers", GRADEVINAR, 65(2), 99-109
- Khan, A., Do, J. and Kim, D. (2016), "Cost effective optimal mix proportioning of high strength self-compacting concrete using response surface methodology", Comput. Concrete, 17(5), 629-638. https://doi.org/10.12989/cac.2016.17.5.629
- Khatib, J.M. (2008), "Performance of self-compacting concrete containing fly ash", Constr. Build. Mater., 22(9), 1963-1971. https://doi.org/10.1016/j.conbuildmat.2007.07.011
- Khayat, K.H. (1999), "Workability, testing, and performance of self-consolidating concrete", ACI Mater. J., 96, 346-353.
- Khayat, K.H. and Guizani, Z. (1997), "Use of viscosity-modifying admixture to enhance stability of fluid concrete", ACI Mater. J., 94(4), 332-340.
- Krieger, I.M. and Dougherty, T.J. (1959), "A mechanism for non-Newtonian flow in suspensions of rigid spheres", Tran. Soc. Rheol., 3(1), 137-152. https://doi.org/10.1122/1.548848
- Liu, M. (2010), "Self-compacting concrete with different levels of pulverized fuel ash", Constr. Build. Mater., 24(7), 1245-1252. https://doi.org/10.1016/j.conbuildmat.2009.12.012
- Long, W.J., Gu, Y., Liao, J. and Xing, F. (2017), "Sustainable design and ecological evaluation of low binder self-compacting concrete", J. Clean. Prod., 167, 317-325. https://doi.org/10.1016/j.jclepro.2017.08.192
- Mahdikhani, M. and Ramezanianpour, A.A. (2014), "Mechanical properties and durability of self-consolidating cementitious materials incorporating nano silica and silica fume", Comput. Concrete, 14(2), 175-191. https://doi.org/10.12989/cac.2014.14.2.175
- Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, Prentice Hall.
- Mohebbi, A., Shekarchi, M., Mahoutian, M. and Mohebbi, S. (2011), "Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network", Comput. Concrete, 8(3), 279-292. https://doi.org/10.12989/cac.2011.8.3.279
- Mundra, S., Sindhi, P.R., Chandwani, V., Nagar, R. and Agrawal, V. (2016), "Crushed rock sand-An economical and ecological alternative to natural sand to optimize concrete mix", Perspect. Sci., 8, 345-347. https://doi.org/10.1016/j.pisc.2016.04.070
- Nepomuceno, M.C., Pereira-de-Oliveira, L.A. and Lopes, S.M.R. (2014), "Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders", Constr. Build. Mater., 64, 82-94. https://doi.org/10.1016/j.conbuildmat.2014.04.021
- Okamura, H. (1995), "Ozawa, and Kazumasa: 'Mix design for self-compacting concrete'concrete", Library of JSCE No. 25.
- Okamura, H. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. https://doi.org/10.3151/jact.1.5
- Ozawa, K. (1989), "High performance concrete based on the durability design of concrete structures", The Second East Asia-Pacific Conference on Structural Engineering & Construction.
- Ozawa, K. and Ouchi, M. (1999) "Proceedings of the international workshop on Self-Compacting Concrete", Kochi.
- Pathak, S.S., Sharma, S., Sood, H. and Khitoliya, R.K. (2012), "Prediction of compressive strength of Self Compacting Concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system", Editorial Preface, 3(10), 112-118.
- Raheman, A. and Modani, P.O. (2013), "Prediction of properties of Self Compacting Concrete using artificial neural network", Int. J. Eng. Res. Appl. (IJERA), 3(4), 333-339.
- Shi, C., Wu, Z., Lv, K. and Wu, L. (2015), "A review on mixture design methods for self-compacting concrete", Constr. Build. Mater., 84, 387-398. https://doi.org/10.1016/j.conbuildmat.2015.03.079
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
- Struble, L. and Sun, G.K. (1995), "Viscosity of portland cement paste as a function of concentration", Adv. Cement Bas. Mater., 2(2), 62-69. https://doi.org/10.1016/1065-7355(95)90026-8
- Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
- Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Constr. Build. Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028
- Uysal, M., Yilmaz, K. and Ipek, M. (2012), "Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures", Constr. Build. Mater., 28(1), 321-326. https://doi.org/10.1016/j.conbuildmat.2011.08.076
- Uysal, M., Yilmaz, K. and Ipek, M. (2012), "The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete", Constr. Build. Mater., 27(1), 263-270. https://doi.org/10.1016/j.conbuildmat.2011.07.049
- Van Der Vurst, F., Grunewald, S., Feys, D., Lesage, K., Vandewalle, L., Vantomme, J. and De Schutter, G. (2017), "Effect of the mix design on the robustness of fresh self-compacting concrete", Cement Concrete Compos., 82, 190-201. https://doi.org/10.1016/j.cemconcomp.2017.06.005
- Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A. and Chaipanich, A. (2014), "Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume", Mater. Des., 64, 261-269. https://doi.org/10.1016/j.matdes.2014.07.042