References
- Masiero E, Agatea L, Mammucari C et al (2009) Autophagy is required to maintain muscle mass. Cell metab 10, 507-515 https://doi.org/10.1016/j.cmet.2009.10.008
- Park SS, Kwon E-S and Kwon K-S (2017) Molecular mechanisms and therapeutic interventions in sarcopenia. Osteoporosis and Sarcopenia 3, 117-122 https://doi.org/10.1016/j.afos.2017.08.098
- Kwak JY, Hwang H, Kim SK et al (2018) Prediction of sarcopenia using a combination of multiple serum biomarkers. Sci Rep 8, 8574 https://doi.org/10.1038/s41598-018-26617-9
- Mordier S, Deval C, Bechet D, Tassa A and Ferrara M (2000) Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin- independent signaling pathway. J Biol Chem 275, 29900-29906 https://doi.org/10.1074/jbc.M003633200
- Mizushima N, Yamamoto A, Matsui M, Yoshimori T and Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15, 1101-1111 https://doi.org/10.1091/mbc.e03-09-0704
- Lecker SH, Jagoe RT, Gilbert A et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18, 39-51 https://doi.org/10.1096/fj.03-0610com
- Petrovski G and Das DK (2010) Does autophagy take a front seat in lifespan extension? J Cell Mol Med 14, 2543-2551 https://doi.org/10.1111/j.1582-4934.2010.01196.x
- Zhao J, Brault JJ, Schild A et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6, 472-483 https://doi.org/10.1016/j.cmet.2007.11.004
- Koren I, Reem E and Kimchi A (2010) DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 20, 1093-1098 https://doi.org/10.1016/j.cub.2010.04.041
- Shin J, McFarland DC, Strasburg GM and Velleman SG (2013) Function of death-associated protein 1 in proliferation, differentiation, and apoptosis of chicken satellite cells. Muscle Nerve 48, 777-790 https://doi.org/10.1002/mus.23832
- Choi AM, Ryter SW and Levine B (2013) Autophagy in human health and disease. N Engl J Med 368, 651-662 https://doi.org/10.1056/NEJMra1205406
- Glick D, Barth S and Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12 https://doi.org/10.1002/path.2697
- Mizushima N, Yoshimori T and Levine B (2010) Methods in mammalian autophagy research. Cell 140, 313-326 https://doi.org/10.1016/j.cell.2010.01.028
- Gallagher LE, Williamson LE and Chan EY (2016) Advances in Autophagy Regulatory Mechanisms. Cells 5, 24 https://doi.org/10.3390/cells5020024
- Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226 https://doi.org/10.1016/j.molcel.2008.03.003
- Inoki K, Zhu T and Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 https://doi.org/10.1016/S0092-8674(03)00929-2
- Le Grand F and Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19, 628-633 https://doi.org/10.1016/j.ceb.2007.09.012
- Fiacco E, Castagnetti F, Bianconi V et al (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23, 1839-1849 https://doi.org/10.1038/cdd.2016.70
- Tang AH and Rando TA (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33, 2782-2797 https://doi.org/10.15252/embj.201488278
- Sin J, Andres AM, Taylor DJ et al (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12, 369-380 https://doi.org/10.1080/15548627.2015.1115172
- Fortini P, Ferretti C, Iorio E et al (2016) The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis. Cell Death Dis 7, e2168 https://doi.org/10.1038/cddis.2016.50
- Sousa-Victor P, Gutarra S, Garcia-Prat L et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316-321 https://doi.org/10.1038/nature13013
- Garcia-Prat L, Martinez-Vicente M, Perdiguero E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529, 37-42 https://doi.org/10.1038/nature16187
- Knuppertz L and Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 153, 30-40 https://doi.org/10.1016/j.mad.2016.01.003
- Levine B and Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42 https://doi.org/10.1016/j.cell.2007.12.018
- Schwalm C, Jamart C, Benoit N et al (2015) Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J 29, 3515-3526 https://doi.org/10.1096/fj.14-267187
- Grumati P, Coletto L, Sabatelli P et al (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16, 1313-1320 https://doi.org/10.1038/nm.2247
- Grumati P, Coletto L, Schiavinato A et al (2011) Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7, 1415-1423 https://doi.org/10.4161/auto.7.12.17877
- Lo Verso F, Carnio S, Vainshtein A and Sandri M (2014) Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 10, 1883-1894 https://doi.org/10.4161/auto.32154
- Tam BT, Pei XM, Yu AP et al (2015) Autophagic adaptation is associated with exercise-induced fibre-type shifting in skeletal muscle. Acta physiologica 214, 221-236 https://doi.org/10.1111/apha.12503
- Liu X, Niu Y, Yuan H, Huang J and Fu L (2015) AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism 64, 658-665 https://doi.org/10.1016/j.metabol.2015.01.015
- Lira VA, Okutsu M, Zhang M et al (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27, 4184-4193 https://doi.org/10.1096/fj.13-228486
- Li FH, Li T, Su YM, Ai JY, Duan R and Liu TC (2018) Cardiac basal autophagic activity and increased exercise capacity. J Physiol Sci 68, 729-742 https://doi.org/10.1007/s12576-018-0592-x
- Li FH, Li T, Ai JY et al (2018) Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model. Front Physiol 9, 571 https://doi.org/10.3389/fphys.2018.00571
- Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163 https://doi.org/10.1016/j.cell.2007.10.035
- Kwon I, Lee Y, Cosio-Lima LM, Cho JY and Yeom DC (2015) Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis. J Exerc Nutrition Biochem 19, 225-234 https://doi.org/10.5717/jenb.2015.15090710
- Sebastian D, Sorianello E, Segales J et al (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35, 1677-1693 https://doi.org/10.15252/embj.201593084
- Demontis F and Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813-825 https://doi.org/10.1016/j.cell.2010.10.007
- Fry CS, Drummond MJ, Glynn EL et al (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1, 11 https://doi.org/10.1186/2044-5040-1-11
- Fry CS, Drummond MJ, Glynn EL et al (2013) Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68, 599-607 https://doi.org/10.1093/gerona/gls209
- Halling JF, Ringholm S, Olesen J, Prats C and Pilegaard H (2017) Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1alpha dependent manner. Exp Gerontol 96, 1-6 https://doi.org/10.1016/j.exger.2017.05.020
- O'Leary MF, Vainshtein A, Iqbal S, Ostojic O and Hood DA (2013) Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol 304, C422-430 https://doi.org/10.1152/ajpcell.00240.2012
- Carnio S, LoVerso F, Baraibar MA et al (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8, 1509-1521 https://doi.org/10.1016/j.celrep.2014.07.061
- Russ DW, Krause J, Wills A and Arreguin R (2012) "SR stress" in mixed hindlimb muscles of aging male rats. Biogerontology 13, 547-555 https://doi.org/10.1007/s10522-012-9399-y
- Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M and Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1, 131-140 https://doi.org/10.4161/auto.1.3.2017
- Fan J, Kou X, Jia S, Yang X, Yang Y and Chen N (2016) Autophagy as a Potential Target for Sarcopenia. J Cell Physiol 231, 1450-1459 https://doi.org/10.1002/jcp.25260
- Luo L, Lu AM, Wang Y et al (2013) Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol 48, 427-436 https://doi.org/10.1016/j.exger.2013.02.009
- Kim YA, Kim YS, Oh SL, Kim HJ and Song W (2013) Autophagic response to exercise training in skeletal muscle with age. J Physiol Biochem 69, 697-705 https://doi.org/10.1007/s13105-013-0246-7
- White Z, Terrill J, White RB et al (2016) Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 6, 45 https://doi.org/10.1186/s13395-016-0117-3
- Fan J, Yang X, Li J et al (2017) Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 8, 17475-17490 https://doi.org/10.18632/oncotarget.15728
- Lenhare L, Crisol BM, Silva VRR et al (2017) Physical exercise increases Sestrin 2 protein levels and induces autophagy in the skeletal muscle of old mice. Exp Gerontol 97, 17-21 https://doi.org/10.1016/j.exger.2017.07.009
- Milan G, Romanello V, Pescatore F et al (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6, 6670 https://doi.org/10.1038/ncomms7670
- Vainshtein A and Hood DA (2016) The regulation of autophagy during exercise in skeletal muscle. J Appl Physiol (1985) 120, 664-673 https://doi.org/10.1152/japplphysiol.00550.2015
- Dalle Pezze P, Ruf S, Sonntag AG et al (2016) A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat Commun 7, 13254 https://doi.org/10.1038/ncomms13254