References
- Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 https://doi.org/10.1016/0014-4827(61)90192-6
- Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75, 685-705 https://doi.org/10.1146/annurev-physiol-030212-183653
- Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C and von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311-323 https://doi.org/10.1111/j.1474-9726.2009.00481.x
- He S and Sharpless NE (2017) Senescence in Health and Disease. Cell 169, 1000-1011 https://doi.org/10.1016/j.cell.2017.05.015
- Leong I (2018) Sustained caloric restriction in health. Nat Rev Endocrinol 14, 322 https://doi.org/10.1038/s41574-018-0008-2
- Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D and Ravussin E (2018) Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab 27, 805-815 e804 https://doi.org/10.1016/j.cmet.2018.02.019
- Roth GS and Ingram DK (2016) Manipulation of health span and function by dietary caloric restriction mimetics. Ann N Y Acad Sci 1363, 5-10 https://doi.org/10.1111/nyas.12834
- Wei M, Brandhorst S, Shelehchi M et al (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 9, 377
- Mitchell SJ, Martin-Montalvo A, Mercken EM et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6, 836-843 https://doi.org/10.1016/j.celrep.2014.01.031
- Burkewitz K, Zhang Y and Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20, 10-25 https://doi.org/10.1016/j.cmet.2014.03.002
- Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395 https://doi.org/10.1038/nature08221
- Nakamura S and Yoshimori T (2018) Autophagy and Longevity. Mol Cells 41, 65-72 https://doi.org/10.14348/MOLCELLS.2018.2333
- Moskalev A, Chernyagina E, Kudryavtseva A and Shaposhnikov M (2017) Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis 8, 354-363 https://doi.org/10.14336/AD.2016.1022
- Conese M, Carbone A, Beccia E and Angiolillo A (2017) The Fountain of Youth: A Tale of Parabiosis, Stem Cells, and Rejuvenation. Open Med (Wars) 12, 376-383 https://doi.org/10.1515/med-2017-0053
- Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20, 659-663 https://doi.org/10.1038/nm.3569
- Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488-492 https://doi.org/10.1038/nature22067
- Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217 https://doi.org/10.1016/j.cell.2013.05.039
- Munoz-Espin D and Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 https://doi.org/10.1038/nrm3823
- Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236 https://doi.org/10.1038/nature10600
- Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189 https://doi.org/10.1038/nature16932
- Xu M, Palmer AK, Ding H et al (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997 https://doi.org/10.7554/eLife.12997
- Ogrodnik M, Miwa S, Tchkonia T et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8, 15691 https://doi.org/10.1038/ncomms15691
- Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23, 1072-1079 https://doi.org/10.1038/nm.4385
- Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM and Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578-582 https://doi.org/10.1038/s41586-018-0543-y
- Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J and van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477 https://doi.org/10.1126/science.aaf6659
- Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23, 775-781 https://doi.org/10.1038/nm.4324
- Xu M, Bradley EW, Weivoda MM et al (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J Gerontol A Biol Sci Med Sci 72, 780-785
- Xu M, Pirtskhalava T, Farr JN et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24, 1246-1256 https://doi.org/10.1038/s41591-018-0092-9
- Zhu Y, Tchkonia T, Pirtskhalava T et al (2015) The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658 https://doi.org/10.1111/acel.12344
- Niedernhofer LJ and Robbins PD (2018) Senotherapeutics for healthy ageing. Nat Rev Drug Discov 17, 377 https://doi.org/10.1038/nrd.2018.44
- Roos CM, Zhang B, Palmer AK et al (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973-977 https://doi.org/10.1111/acel.12458
- Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8, 14532 https://doi.org/10.1038/ncomms14532
- Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22, 78-83 https://doi.org/10.1038/nm.4010
- Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H et al (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435 https://doi.org/10.1111/acel.12445
- Yosef R, Pilpel N, Tokarsky-Amiel R et al (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7, 11190 https://doi.org/10.1038/ncomms11190
- Zhu Y, Doornebal EJ, Pirtskhalava T et al (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9, 955-963 https://doi.org/10.18632/aging.101202
- Moncsek A, Al-Suraih MS, Trussoni CE et al (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(-/-) ) mice. Hepatology 67, 247-259 https://doi.org/10.1002/hep.29464
- Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422 https://doi.org/10.1038/s41467-017-00314-z
- Wang Y, Chang J, Liu X et al (2016) Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 8, 2915-2926 https://doi.org/10.18632/aging.101100
- Hwang HV, Tran DT, Rebuffatti MN, Li CS and Knowlton AA (2018) Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS One 13, e0190374 https://doi.org/10.1371/journal.pone.0190374
- Samaraweera L, Adomako A, Rodriguez-Gabin A and McDaid HM (2017) A Novel Indication for Panobinostat as a Senolytic Drug in NSCLC and HNSCC. Sci Rep 7, 1900 https://doi.org/10.1038/s41598-017-01964-1
- Kim YH, Choi YW, Lee J, Soh EY, Kim JH and Park TJ (2017) Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 8, 15208 https://doi.org/10.1038/ncomms15208
- Milanovic M, Fan DNY, Belenki D et al (2018) Senescenceassociated reprogramming promotes cancer stemness. Nature 553, 96-100 https://doi.org/10.1038/nature25167
- Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 169, 132-147.e116 https://doi.org/10.1016/j.cell.2017.02.031
- Liu P, Zhao H and Luo Y (2017) Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 8, 868-886 https://doi.org/10.14336/AD.2017.0816
- Hubbard BP and Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35, 146-154 https://doi.org/10.1016/j.tips.2013.12.004
- Lamming DW, Ye L, Sabatini DM and Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123, 980-989 https://doi.org/10.1172/JCI64099
- Si H and Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25, 581-591 https://doi.org/10.1016/j.jnutbio.2014.02.001
- Soto-Gamez A and Demaria M (2017) Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 22, 786-795 https://doi.org/10.1016/j.drudis.2017.01.004
- Chondrogianni N, Voutetakis K, Kapetanou M et al (2015) Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 23, 37-55 https://doi.org/10.1016/j.arr.2014.12.003
- Chung HY, Lee EK, Choi YJ et al (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90, 830-840 https://doi.org/10.1177/0022034510387794
- Franceschi C, Garagnani P, Vitale G, Capri M and Salvioli S (2017) Inflammaging and 'Garb-aging'. Trends Endocrinol Metab 28, 199-212 https://doi.org/10.1016/j.tem.2016.09.005
- Tilstra JS, Clauson CL, Niedernhofer LJ and Robbins PD (2011) NF-kappaB in Aging and Disease. Aging Dis 2, 449-465
- Tilstra JS, Robinson AR, Wang J et al (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122, 2601-2612 https://doi.org/10.1172/JCI45785
- Xu M, Tchkonia T, Ding H et al (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112, E6301-6310 https://doi.org/10.1073/pnas.1515386112
- Kang HT, Park JT, Choi K et al (2017) Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol 13, 616-623 https://doi.org/10.1038/nchembio.2342
- Cao K, Blair CD, Faddah DA et al (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121, 2833-2844 https://doi.org/10.1172/JCI43578
- Lee SJ, Jung YS, Yoon MH et al (2016) Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype. J Clin Invest 126, 3879-3893 https://doi.org/10.1172/JCI84164
- Yang HH, Hwangbo K, Zheng MS et al (2014) Inhibitory effects of juglanin on cellular senescence in human dermal fibroblasts. J Nat Med 68, 473-480 https://doi.org/10.1007/s11418-014-0817-0
- Yang HH, Hwangbo K, Zheng MS et al (2014) Quercetin-3-O-beta-D-glucuronide isolated from Polygonum aviculare inhibits cellular senescence in human primary cells. Arch Pharm Res 37, 1219-1233 https://doi.org/10.1007/s12272-014-0344-2
- Yang HH, Hwangbo K, Zheng MS et al (2015) Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch Pharm Res 38, 876-884 https://doi.org/10.1007/s12272-014-0435-0
- Yang HH, Zhang H, Son JK and Kim JR (2015) Inhibitory effects of quercetagetin 3,4'-dimethyl ether purified from Inula japonica on cellular senescence in human umbilical vein endothelial cells. Arch Pharm Res 38, 1857-1864 https://doi.org/10.1007/s12272-015-0577-8
- Bae YU, Choi JH, Nagy A, Sung HK and Kim JR (2016) Antisenescence effect of mouse embryonic stem cell conditioned medium through a PDGF/FGF pathway. FASEB J 30, 1276-1286 https://doi.org/10.1096/fj.15-278846
- Bae YU, Son Y, Kim CH et al (2018) Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF--receptor 2 pathway. J Gerontol A Biol Sci Med Sci [Epub ahead of print]
- Burton DGA and Stolzing A (2018) Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res Rev 43, 17-25 https://doi.org/10.1016/j.arr.2018.02.001
- Demaria M, Ohtani N, Youssef SA et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31, 722-733 https://doi.org/10.1016/j.devcel.2014.11.012
- Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667 https://doi.org/10.1016/j.cell.2008.06.049
- Munoz-Espin D, Canamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118 https://doi.org/10.1016/j.cell.2013.10.019
- Sagiv A, Burton DG, Moshayev Z et al (2016) NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 8, 328-344 https://doi.org/10.18632/aging.100897
- Kim KM, Noh JH, Bodogai M et al (2017) Identification of senescent cell surface targetable protein DPP4. Genes Dev 31, 1529-1534 https://doi.org/10.1101/gad.302570.117
- Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551 https://doi.org/10.1038/nature10599
- van Deursen JM (2014) The role of senescent cells in ageing. Nature 509, 439-446 https://doi.org/10.1038/nature13193
- Childs BG, Durik M, Baker DJ and van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435 https://doi.org/10.1038/nm.4000
- Kim TW, Kim HJ, Lee C et al (2008) Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system. Exp Gerontol 43, 286-295 https://doi.org/10.1016/j.exger.2007.12.010
- Thapa RK, Nguyen HT, Jeong JH et al (2017) Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep 7, 43299 https://doi.org/10.1038/srep43299
- Nguyen HT, Thapa RK, Shin BS et al (2017) CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence. Nanotechnology 28, 095101 https://doi.org/10.1088/1361-6528/aa57b3