DOI QR코드

DOI QR Code

Merging technique for evapotranspiration based on in-situ, satellite, and reanalysis data using modifed KGE fusion method

수정된 KGE 방법을 활용한 지점, 인공위성, 재분석 자료 기반 증발산 융합 기술

  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Department of Water Resources, Sungkyunkwan University) ;
  • Park, Jongmin (Department of Civil and Environmental Engineering, University of Maryland) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 백종진 (성균관대학교 건설환경연구소) ;
  • 정재환 (성균관대학교 수자원전문대학원) ;
  • 박종민 (메릴랜드대학교 건설환경공학과) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Received : 2018.10.08
  • Accepted : 2018.12.04
  • Published : 2019.01.31

Abstract

The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.

실제증발산 자료를 융합하기 위한 Modified Kling-Gupta efficiency Fusion (KGF)방법을 제시하였고, 인공위성 및 재분석 증발산 자료인 Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16)를 활용하여 Simple Taylor skill's Score (STS)와 비교하였다. 한반도와 중국의 세가지 land cover type(i.e., cropland, grassland, forest)을 가진 flux tower에서 비교 검증을 실시하였다. 실제증발산의 융합 방법인 STS와 KGF로 계산된 가중치의 결과를 확인하면, cropland와 grassland에서 재분석 자료(GLDAS, GLEAM)가 높은 가중치 영향을 나타내지만, forest에서 융합 방법에 따라 가중치 영향이 다르게 나타났다. 전반적으로 실제증발산 융합 방법 적용 결과의 비교에서는 cropland에서는 융합에 사용된 자료에 비하여 높은 개선이 이뤄지지 않았지만, grassland와 forest 에서는 개선이 이뤄졌다. 두 방법 중 KGF의 결과가 STS의 결과에 비하여 약간 개선되는 결과를 나타내었다.

Keywords

SJOHCI_2019_v52n1_61_f0001.png 이미지

Fig. 1. Location map of the study sites

SJOHCI_2019_v52n1_61_f0002.png 이미지

Fig. 2. Time series of satellite- and reanalysis-datasets with flux tower at three different land cover types; a) cropland, b) grassland, and c) forest areas

SJOHCI_2019_v52n1_61_f0003.png 이미지

Fig. 3. Statistical analysis of seasonal ET of satellite- and reanalysis datasets with flux tower at three different land cover types; a) cropland, b) grassland, and c) forest areas

SJOHCI_2019_v52n1_61_f0004.png 이미지

Fig. 4. Bar chart of weighting factor results from the STS and KGF methods at three different land cover types; a) cropland, b) grassland, and c) forest areas

SJOHCI_2019_v52n1_61_f0005.png 이미지

Fig. 5. Radar chart of statistical analysis of satellite- and reanalysis ET product with merged ET dataset at three different land cover types; a) cropland, b) grassland, and c) forest areas

Table 1. Information of flux tower sites used in this study

SJOHCI_2019_v52n1_61_t0001.png 이미지

Table 2. Information of reanalysis- and satellite based datasets in this study

SJOHCI_2019_v52n1_61_t0002.png 이미지

Table 3. Statistical methods for error evaluation

SJOHCI_2019_v52n1_61_t0003.png 이미지

References

  1. Baik, J., and Choi, M. (2015). "Evaluation of remotely sensed actual evapotranspiration products from COMS and MODIS at two different flux tower sites in Korea." International Journal of Remote Sensing, Vol. 36, No. 1, pp. 375-402. https://doi.org/10.1080/01431161.2014.998349
  2. Baik, J., Liaqat, U. W., and Choi, M. (2018a). "Assessment of satellite and reanalysis-based evapotranspiration products with two blending approaches over the complex landscapes and climates of Australia." Agricultural and Forest Meteorology, Vol. 263, pp. 388-398. https://doi.org/10.1016/j.agrformet.2018.09.007
  3. Baik, J., Jeong, J., and Choi, M. (2018b). "Estimation of the optimal evapotranspiration by using satellite- and reanalysis modelbased evapotranspiration estimations" Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 273-280. https://doi.org/10.3741/JKWRA.2018.51.3.273
  4. Baik, J., Park, J., Ryu, D., and Choi, M. (2016). "Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite-based and ground-based data". Hydrological Processes, Vol. 30, No. 16, pp. 2789-2803. https://doi.org/10.1002/hyp.10786
  5. Cheema, M. J. M., and Bastiaanssen, W. G. M. (2012). "Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin." International Journal of Remote Sensing, Vol. 33, No. 8, pp. 2603-2627. https://doi.org/10.1080/01431161.2011.617397
  6. Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X. (2009). "Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types," Agricultural and Forest Meteorology, Vol. 149, No. 11, pp. 1800-1809. https://doi.org/10.1016/j.agrformet.2009.06.009
  7. Duan, Z., and Bastiaanssen, W. G. M. (2013). "First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure." Remote Sensing of Environment, Vol. 131, pp. 1-13. https://doi.org/10.1016/j.rse.2012.12.002
  8. Ehret, U., (2003). Rainfall and Flood Nowcasting in Small Catchments Using Weather Radar. Ph. D Thesis. University of Stuttgart, Germany, Germany.
  9. Jeong, J., Baik, J., and Choi, M. (2018) "Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula." Journal of Korea Water Resources Association, Vol. 51, No. 2, pp. 89-98. https://doi.org/10.3741/JKWRA.2018.51.2.89
  10. Khan, M. S., Liaqat, U. W., Baik, J., and Choi, M. (2018). "Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach." Agricultural and Forest Meteorology, Vol. 252, pp. 256-268. https://doi.org/10.1016/j.agrformet.2018.01.022
  11. Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V., Zohaib, M., and Choi, M. (2018). "Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products." Remote Sensing of Environment, Vol. 204, pp. 260-275. https://doi.org/10.1016/j.rse.2017.10.026
  12. Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S., and Choi, M. (2016). "An Assessment and Analysis of the Gap-Filling Techniques for Revising Missing Data of Flux Tower based Evapotranspiration-FAO-PM, MDV, and Kalman Filter." The Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107. https://doi.org/10.9798/KOSHAM.2016.16.6.95
  13. Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., and Sharma, A. (2015). "A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation." Geophysical Research Letters, Vol. 42, No. 16, pp. 6662-6670. https://doi.org/10.1002/2015GL064981
  14. Kling, H., Fuchs, M., and Paulin, M. (2012). "Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios." Journal of Hydrology, Vol. 424, pp. 264-277. https://doi.org/10.1016/j.jhydrol.2012.01.011
  15. Lee, M. J., Han, K. S., and Kim, I. H. (2011). "Estimation of Actual Evapotranspiration using Multi-Satellite Data over Korea Peninsula." Journal of Korean Society for Geospatial Information System, Vol. 19, No. 4, pp. 145-151.
  16. Liu, C., Shu, S., and Gao, W. (2013). "Improved sensible and latent heat flux estimation of community land model by using ensemble Kalman filter assimilation." In Remote Sensing and Modeling of Ecosystems for Sustainability X (Vol. 8869, p. 886917). International Society for Optics and Photonics. doi: https://doi.org/10.1117/12.2021713.
  17. Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M., Sheffield, J., Teuling, A.J., Wang, K., Wood, E. F., Zhang, Y. (2011). "Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations." Geophysical Research Letters, Vol. 38, No. 6, L06402. https://doi.org/10.1029/2010GL046230
  18. Seo, H., Kim, J., Park, H., and Kim, Y. (2017). "Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 2, pp. 303-310. https://doi.org/10.12652/Ksce.2017.37.2.0303
  19. Shin, S. C., and An, T. Y. (2007). "Development of Estimating Method for Areal Evapotranspiration using Satellite Data." Journal of the Korean Association of Geographic Information Studies, Vol. 10, No. 2, pp. 71-81.
  20. Sun, Z., Wang, Q., Ouyang, Z., Watanabe, M., Matsushita, B., and Fukushima, T. (2007). "Evaluation of MOD16 algorithm using MODIS and ground observational data in winter wheat field in North China Plain." Hydrological Processes: An International Journal, Vol. 21, No. 9, pp. 1196-1206. https://doi.org/10.1002/hyp.6679
  21. Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B., (2011). "Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches." Remote Sensing of Environment, Vol. 115, No. 3, pp. 801-823. https://doi.org/10.1016/j.rse.2010.11.006
  22. Wang, H. M., Saigusa, N., Zu, Y. G., Wang, W. J., Yamamoto, S., and Kondo, H. (2008). "Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China." Journal of Forestry Research, Vol. 19, No. 1, pp. 1-10. https://doi.org/10.1007/s11676-008-0001-z
  23. Yao, Y., Liang, S., Li, X., Zhang, Y., Chen, J., Jia, K., Zhang, X., Fisher, J., Wang, X., Zhang, L., Xu, J., Shao, C., Posee, G., Li, Y., Magliulo, V., Varlagin, A., Moors, E. J., Boike, J., Macfarlane, C., Kato, T., Buchmann, N., Billesbach, D. P., Berimger, J., Wolf, S., Papuga, S. A., Wohlfahrt, G., Montagnani, L., Ardo, J., Paul-Limoges, E., Emmel, C., Hortnagl, L., Sachs, T., Gruening, C., Gioli, B., Lopez-Ballesteros, A., Steinbrecher, R., and Gielen, B. (2017). "Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method." Journal of Hydrology, Vol. 553, pp. 508-526. https://doi.org/10.1016/j.jhydrol.2017.08.013
  24. Yilmaz, M. T., Crow, W. T., Anderson, M. C., and Hain, C. (2012). "An objective methodology for merging satellite-and model-based soil moisture products." Water Resources Research, Vol. 48, No. 11, W11502.
  25. Yu, G., Fu, Y., Sun, X., Wen, X., and Zhang, L. (2006). "Recent progress and future directions of ChinaFLUX." Science in China Series D: Earth Sciences, Vol. 49, No. 2, pp. 1-23.