Fig. 1. ML(Maximum Likelihood) phylogenetic tree of 28 procaryotes in the point of presence or absence of the union of 4,631 COGs. Bootstrap values at each node are expressed as a percentage of 1,000 trials. See table 1 for abbreviations of prokaryotes
Fig. 2. ML (Maximum Likelihood) phylogenetic tree of 28 procaryotes in the point of presence or absence of the union of 2,526 metabolic pathways. Bootstrap values at each node are expressed as a percentage of 1,000 trials. See Table 1 for abbreviations of prokaryotes.
Fig. 3. ML (Maximum Likelihood) phylogenetic tree of 28 procaryotes in the point of 16S rRNA genes. Bootstrap values at each node are expressed as a percentage of 1,000 trials. See Table 1 for abbreviations of prokaryotes.
Table 1. Studied prokaryotes and their numbers (#) and percentage (%) of total genes, conservative genes (orthologs) and metabolic pathways at each prokaryote and genus
References
- Asai, T., Zaporojets, D., Squires, C. and Squires, C. L. 1999. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc. Natl. Acad. Sci. USA. 96, 1971-1976. https://doi.org/10.1073/pnas.96.5.1971
- Bassil, N. M. and Lloyd, J. R. 2017. Draft genome sequences of four alkaliphilic bacteria belonging to the Anaerobacillus genus. Genome Announc. 5, e01493-16.
- Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Pujar, A., Shearer, A. G., Travers, M., Weerasinghe, D., Zhang, P. and Karp, P. D. 2012. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nuc. Acids Res. 40, D742-D753. https://doi.org/10.1093/nar/gkr1014
- Galperin, M. Y., Makarova, K. S., Wolf, Y. I. and Koonin, E. V. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261-D269. https://doi.org/10.1093/nar/gku1223
- Gan, H. M., Hudson, A. O., Rahman, A. Y., Chan, K. G. and Savka, M. A. 2013. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 28, 431.
- Gupta, R. S. 2016. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol. Rev. 40, 520-553. https://doi.org/10.1093/femsre/fuw011
- Han, K., Li, Z. F., Peng, R., Zhu, L. P., Zhou, T., Wang, L. G., Li, S. G., Zhang, X. B., Hu, W., Wu, Z. H., Qin, N. and Li, Y. Z. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3, 2101. https://doi.org/10.1038/srep02101
- Johnson, K. N. 2015. Bacteria and antiviral immunity in insects. Curr. Opin. Insect Sci. 8, 97-103. https://doi.org/10.1016/j.cois.2015.01.008
- Klein-Marcuschamer, D., Santos, C. N., Yu, H. and Stephanopoulos, G. 2009. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl. Environ. Microbiol. 75, 2705-2711. https://doi.org/10.1128/AEM.01888-08
- Lee, D. G. and Lee, S. H. 2015. Investigation of conservative genes in 711 prokaryotes. J. Life Sci. 25, 1007-1013. https://doi.org/10.5352/JLS.2015.25.9.1007
- Lee, D. G. 2018. Comparison of metabolic pathways of less orthologous prokaryotes than Mycoplasma genitalium. J. Life Sci. 28, 369-375. https://doi.org/10.5352/JLS.2018.28.3.369
- Qin, Q. L., Xie, B. B., Zhang, X. Y., Chen, X. L., Zhou, B. C., Zhou, J., Oren, A. and Zhang, Y. Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210-2215. https://doi.org/10.1128/JB.01688-14
- Rajendhran, J. and Gunasekaran, P. 2011. Microbial phylogeny and diversity : Small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99-110. https://doi.org/10.1016/j.micres.2010.02.003
- Wang,Y., Zhang, Z. and Ramanan, N. 1997. Theactinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J. Bacteriol. 179, 3270-3276. https://doi.org/10.1128/jb.179.10.3270-3276.1997
- Zhong, Z., Zhang, W., Song, Y., Liu, W., Xu, H., Xi, X., Menghe, B., Zhang, H. and Sun, Z. 2017. Comparative genomic analysis of the genus Enterococcus. Microbiol. Res. 196, 95-105. https://doi.org/10.1016/j.micres.2016.12.009