DOI QR코드

DOI QR Code

어류병원균 Streptococcus iniae의 toxin/antitoxin system에 대한 연구

Studies on a Toxin/Antitoxin System in Streptococcus iniae

  • 윤성용 (부산대학교 대학원 생명시스템학과) ;
  • 김연하 (부산대학교 대학원 생명시스템학과) ;
  • 전문정 (부산대학교 대학원 생명시스템학과) ;
  • 성민지 (부산대학교 대학원 생명시스템학과) ;
  • 유아영 (부산대학교 미생물학과) ;
  • 이동희 (부산대학교 대학원 생명시스템학과) ;
  • 문기환 (한국해양대학교 해양생명과학부) ;
  • 강호영 (부산대학교 대학원 생명시스템학과)
  • Yoon, Seongyong (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Yeon Ha (Department of Integrated Biological Science, Pusan National University) ;
  • Jeun, Moonjung (Department of Integrated Biological Science, Pusan National University) ;
  • Seong, Minji (Department of Integrated Biological Science, Pusan National University) ;
  • Yoo, Ah Young (Department of Microbiology, Pusan National University) ;
  • Lee, Donghee (Department of Integrated Biological Science, Pusan National University) ;
  • Moon, Ki Hwan (Division of Marine Bioscience, Korea Maritime and Ocean University) ;
  • Kang, Ho Young (Department of Integrated Biological Science, Pusan National University)
  • 투고 : 2019.01.09
  • 심사 : 2019.01.25
  • 발행 : 2019.01.30

초록

Streptococcus iniae는 대표적인 어류병원균으로 인수공통의 질병을 일으킨다. S. iniae FP5228에 존재하는 병원성 인자를 찾고자 하는 연구과정에서 S. iniae를 24시간 이상 배양한 배양액에는 살아있는 균의 수가 급격하게 감소하는 현상을 발견하였다. 이 현상은 FP5228 균이 가지고 있는 14 kb plasmid 상에 있는 toxin/antitoxin (TA) system의 구성요소인 toxin ${\zeta}$와 antitoxin ${\varepsilon}$ 유전자가 관련이 있을 것이란 가설을 설정하였다. IPTG와 arabinose에 의해 toxin ${\zeta}$와 antitoxin ${\varepsilon}$의 발현이 조절되는 pBP1140 vector system을 구축하였다. E. coli/pBP1140 균주는 toxin이 발현되는 조건에서 초기 생육이 느려졌고, 현미경의 관찰에서 균체가 길어짐을 확인하였다. FP5228 균주가 가진 14 kb plasmid를 없앤 S. iniae CK287을 제조하였다. CK287 균은 배양 중 급격하게 사멸되는 현상을 보이지 않았고, biofilm 생성능력도 감소하였고 세포독성 시험과 물고기 시험에서 독성이 약화 된 것이 확인되었다. 이들 결과 들은 TA system이 생리적 조절 및 병원성 인자의 발현에 관련이 있음을 추정할 수 있다.

Streptococcus iniae is a typical fish pathogen causing streptococcosis and it can also cause zoonotic infectious diseases. We studied S. iniae FP5228 isolated from infected olive flounder in Wando, Korea. In a study to find virulence factors in FP5228, we found that the number of live bacteria decreased dramatically in culture medium containing S. iniae FP5228 for more than 24 hr. This phenomenon was hypothesized to be related to Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ genes, components of the Toxin/ Antitoxin (TA) system on the 14 kb plasmid of FP5228. We used a protein overexpression system to identify it. The pBP1140 vector system was constructed to regulate the expression of Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ by IPTG and Arabinose. E. coli/pBP1140 strain grew slowly in early growth under toxin expression condition, and it was confirmed by microscopic observation that the strain became longer. S. iniae CK287, lacking a 14 kb plasmid of S. iniae FP5228 strain, was constructed. CK287 bacterial cells did not show rapid killing during culture, and the ability to produce biofilm was also decreased, and toxicity was weakened in cytotoxicity test and fish test. These results suggest that the TA system is involved in physiological regulation and expression of virulence factors in S. iniae FP5228.

키워드

SMGHBM_2019_v29n1_97_f0001.png 이미지

Fig. 1. Growth analysis of S. iniae, E. coli, B. subtilis, E. piscicida. The absorbance and viable count were measured every 12 hours. The absorbance was measured at OD600, and the number of viable cells was determined by counting the colonies formed in the BHI agar plate after serial dilution with 0.85% NaCl solution.(A)S. iniae FP5228, (B) E. coli DH5a, (C) B. subtilis subsp. subtilis, (D) E. piscicida CK41; dark gray line : OD600, gray line : viable count (CFU/ml).

SMGHBM_2019_v29n1_97_f0002.png 이미지

Fig. 2. Construction of overexpression vector of toxin and antitoxin in S. iniae FP5228. (A) pBP1140 vector construction process. (B) Confirmation of pBP1140 vector using PCR. M : marker, lane 1 ; antitoxin ε : 287 bp, lane 2; pBAD :: toxin ζ : 2643bp, lane 3 ; toxin ζ : 864 bp.

SMGHBM_2019_v29n1_97_f0003.png 이미지

Fig. 3. Growth analysis of toxin antitoxin overexpressed E. coli. The growth rate of the arabinose overexpressing strain at the early stage of growth was slower than the other conditions. (A) Growth curves measured using absorbance (OD 600nm). (B) Growth curves measured by viable count. (log CFU/ml/1,000,000), ◆ : control, ■ : IPTG induction, ▲ : Arabinose induction, × : IPTG & arabinose induction.

SMGHBM_2019_v29n1_97_f0004.png 이미지

Fig. 4. Morphological changes of E. coli BL21 overexpressing Toxin. Overexpression of toxin in E. coli BL21 confirmed that the cell length was prolonged. (Gram staining, ×400) ; (A) control (not induction), (B) IPTG induction, (C) Arabionse induction, (D) IPTG & arabinose induction.

SMGHBM_2019_v29n1_97_f0005.png 이미지

Fig. 5. Characteristic difference between wild type S. iniae (FP 5228) and plasmid-cured S. iniae (CK287). (A) Growth curves and viable counts of S. iniae FP5228 and CK287. It was confirmed that the decrease in viable cells was slightly improved in CK287.; ◆ OD600 of FP5228, ▲: OD600 of CK287, ■: CFU/ml of FP5228, ×: CFU/ml of CK287. (B) Plasmid preparation of S. iniae FP5228 and CK287.; lane 1 : FP5228, lane 2 : CK287. Plasmid size: 13,781 bp.

SMGHBM_2019_v29n1_97_f0006.png 이미지

Fig. 6. Comparison of biofilm formation between S. iniae FP5228 and CK287.

SMGHBM_2019_v29n1_97_f0007.png 이미지

Fig. 7. MTT assay between S. iniae FP5228 and CK287. In all cases, wild type S. iniae showed lower value than CK287. (n=3) (*p< 0.1).

SMGHBM_2019_v29n1_97_f0008.png 이미지

Fig. 8. Virulence of S. iniae strains in zebrafish. To confirm the virulence, different concentrations of bacteria were inoculated. Survival rate was measured for 12 days. ◆, FP5228 108 CFU/fish; ■, FP5228 107 CFU/fish; ▲, FP5228 106 CFU/fish; Χ, CK287 108 CFU/fish; Ж, CK287 107 CFU/fish; ●, CK287 106 CFU/fish.

Table 1. PCR primers used in this study

SMGHBM_2019_v29n1_97_t0001.png 이미지

참고문헌

  1. Aakre, C. D., Phung, T. N., Huang, D. and Laub, M. T. 2013. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the beta sliding clamp. Mol. Cell. 52, 617-628. https://doi.org/10.1016/j.molcel.2013.10.014
  2. Agnew, W. and Barnes, A. C. 2007. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 122, 1-15. https://doi.org/10.1016/j.vetmic.2007.03.002
  3. Baiano, J. C. and Barnes, A. C. 2009. Towards control of Streptococcus iniae. Emerg. Infect. Dis. 15, 1891-1896. https://doi.org/10.3201/eid1512.090232
  4. Brown, J. M. and Shaw, K. J. 2003. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600-6608. https://doi.org/10.1128/JB.185.22.6600-6608.2003
  5. Fozo, E. M., Hemm, M. R. and Storz, G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72, 579-589, Table of Contents. https://doi.org/10.1128/MMBR.00025-08
  6. Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561-572. https://doi.org/10.1128/JB.182.3.561-572.2000
  7. Hayes, F. 2003. Toxins-antitoxins: Plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496-1499. https://doi.org/10.1126/science.1088157
  8. Hernandez, E., Figueroa, J. and Iregui, C. 2009. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J. Fish. Dis. 32, 247-252. https://doi.org/10.1111/j.1365-2761.2008.00981.x
  9. Kim, Y. and Hwang, J. 2016. Bacterial toxin-antitoxin systems and their biotechnological applications. J. Life Sci. 26, 265-274. https://doi.org/10.5352/JLS.2016.26.2.265
  10. Labrie, S. J., Samson, J. E. and Moineau, S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317-327. https://doi.org/10.1038/nrmicro2315
  11. Llorens, J. M. N., Tormo, A. and Martinez-Garcia, E. 2010. Stationary phase in gram-negative bacteria. FEMS. Microbiol. Rev. 34, 476-495. https://doi.org/10.1111/j.1574-6976.2010.00213.x
  12. Locke, J. B., Colvin, K. M., Varki, N., Vicknair, M. R., Nizet, V. and Buchanan, J. T. 2007. Streptococcus iniae beta-hemolysin streptolysin S is a virulence factor in fish infection. Dis. Aquat. Org. 76, 17-26. https://doi.org/10.3354/dao076017
  13. Madigan, M. T. 2015. Brock biology of microorganisms. Boston, Pearson.
  14. Mchugh, G. L. and Swartz, M. N. 1977. Elimination of plasmids from several bacterial sSpecies by novobiocin. Antimicrob. Agents Chemother. 12, 423-426. https://doi.org/10.1128/AAC.12.3.423
  15. Mutschler, H., Gebhardt, M., Shoeman, R. L. and Meinhart, A. 2011. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9, e1001033. https://doi.org/10.1371/journal.pbio.1001033
  16. Mutschler, H. and Meinhart, A. 2011. epsilon/zeta systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. 89, 1183-1194. https://doi.org/10.1007/s00109-011-0797-4
  17. O'Toole, G. A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 47, pii: 2437. https://doi.org/10.3791/2269
  18. Sambrook, J., Russell, D. W. and Sambrook, J. 2006. The condensed protocols from Molecular cloning : a laboratory manual. Cold Spring Harbor, N. Y.,Cold Spring Harbor Laboratory Press.
  19. Sun, J. R., Yan, J. C., Yeh, C. Y., Lee, S. Y. and Lu, J. J. 2007. Invasive infection with Streptococcus iniae in Taiwan. J. Med. Microbiol. 56, 1246-1249. https://doi.org/10.1099/jmm.0.47180-0
  20. Tabone, M., Ayora, S. and Alonso, J. C. 2014. Toxin zeta reversible induces dormancy and reduces the UDP-N-acetylglucosamine pool as one of the protective responses to cope with stress. Toxins (Basel). 6, 2787-2803. https://doi.org/10.3390/toxins6092787
  21. Van Melderen, L. and De Bast, M. S. 2009. Bacterial toxinantitoxin systems: More than selfish entities? PLoS Genet. 5, e1000437. https://doi.org/10.1371/journal.pgen.1000437
  22. Wang, X. X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2013. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734-1744. https://doi.org/10.1111/1462-2920.12063
  23. Yao, X., Chen, T., Shen, X., Zhao, Y., Wang, M., Rao, X., Yin, S., Wang, J., Gong, Y., Lu, S., Le, S., Tan, Y., Tang, J., Fuquan, H. and Li, M. 2015. The chromosomal SezAT toxin- antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Mol. Microbiol. 98, 243-257. https://doi.org/10.1111/mmi.13116
  24. Yu, J. E., Cho, M. Y., Kim, J. W. and Kang, H. Y. 2012. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb. Pathog. 52, 259-266. https://doi.org/10.1016/j.micpath.2012.01.006
  25. Zlotkin, A., Chilmonczyk, S., Eyngor, M., Hurvitz, A., Ghittino, C. and Eldar, A. 2003. Trojan horse effect: phagocyte-mediated Streptococcus iniae infection of fish. Infect. Immun. 71, 2318-2325. https://doi.org/10.1128/IAI.71.5.2318-2325.2003