References
- Babu Gunda, J. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014
- Badran, H.T. (2008), "Vibration attenuation of periodic sandwich beams", M.Sc. Dissertation, Cairo University, Cairo.
- Badran, H.T. (2018), "Improving dynamic and aeroelastic performance of helicopter rotors using periodic design and piezo active control", Ph.D. Dissertation, Cairo University, Cairo.
- Badran, H.T., Tawfik, M. and Negm, H.M. (2017), "Improving wing aeroelastic characteristics using periodic design", Adv. Aircraft Spacecraft Sci., 4(4), 353-369. https://doi.org/10.12989/AAS.2017.4.4.353
- Banerjee, J. and Kennedy, D. (2014), "Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects", J. Sound Vib., 333(26), 7299-7312. https://doi.org/10.1016/j.jsv.2014.08.019
- Bazoune, A., Khulief, Y.A., Stephen, N.G. and Mohiuddin, M.A. (2001), "Dynamic response of spinning tapered Timoshenko beams using modal reduction", Finite Elem. Anal. Des., 37(3), 199-219. https://doi.org/10.1016/S0168-874X(00)00030-5
- Bisplinghoff, R., Ashley, H. and Halfman, R. (1996), Aeroelasticity, Dover Publication Inc., Mineola, New York, U.S.A.
- Chandiramani, N.K., Shete, C.D. and Librescu, L.I. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", J. Mech. Sci., 45(12), 2017-2041. https://doi.org/10.1016/j.ijmecsci.2004.02.001
- Chen, J., Ding, Y. and Ding, H. (2016), "An efficient approach for dynamic analysis of a rotating beam using the discrete singular convolution", P. I. Mech. Eng. C. J. Mec., 230(20), 3642-3654. https://doi.org/10.1177/0954406215616142
- Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856
- Don, M., Palmeri, A., Lombardo, M. and Cicirello, A. (2015), "An efficient two-node finite element formulation of multi-damaged beams including shear deformation and rotatory inertia", Comput. Struct., 147(C), 96-106. https://doi.org/10.1016/j.compstruc.2014.10.002
- El-Din, M.A. and Tawfik, M. (2006), "Vibration attenuation in rotating beams with periodically distributed piezoelectric controllers", Proceedings of the 13th International Congress on Sound and Vibration (ICSV'06), Vienna, Austria, July.
- Faulkner, M. and Hong, D. (1985), "Free vibrations of a mono-coupled periodic system", J. Sound Vib., 99(1), 29-42. https://doi.org/10.1016/0022-460X(85)90443-2
- Filippi, M. and Carrera, E. (2015), "Flutter analysis of fixed and rotary wings through a one-dimensional unified formulation", Compos. Struct., 133, 381-389. https://doi.org/10.1016/j.compstruct.2015.07.103
- Friedman, Z. and Kosmatka, J.B. (1993), "An improved two-node Timoshenko beam finite element", Comput. Struct., 47(3), 473-481. https://doi.org/10.1016/0045-7949(93)90243-7
- Gerstenberger, W. and Wood, E.R. (1963), "Analysis of Helicopter Aeroelastic Characteristics in High-Speed Flight", AIAA Journal, 1(10), 2366-2381. https://doi.org/10.2514/3.2068
- Guertin, M. (2012), "The application of finite element methods to aeroelastic lifting surface flutter", Ph.D. Dissertation, Rice University, Houston, Texas, U.S.A.
- Gupta, G.S. (1970), "Natural flexural waves and the normal modes of periodically-supported beams and plates", J. Sound Vib., 13(1), 89-101. https://doi.org/10.1016/S0022-460X(70)80082-7
- Hammond, C.E. (1969), "Compressibility effects in helicopter rotor blade flutter", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, U.S.A.
- Hollowell, S.J. and Dugundji, J. (1984), "Aeroelastic flutter and divergence of stiffness coupled, graphite/epoxy cantilevered plates", J. Aircraft, 21(1), 69-76. https://doi.org/10.2514/3.48224
- Jones, W. and Rao, B. (1970) "Compressibility effects on oscillating rotor blades in hovering flight", AIAA Journal, 8(2), 321-329. https://doi.org/10.2514/3.5663
- Jung, S.N., Nagaraj, V.T. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA Journal, 39(2), 339-348. https://doi.org/10.2514/2.1310
- Kapur, K.K. (1966), "Vibrations of a Timoshenko beam, using finite-element approach", J. Acoustical Soc. America, 40(5), 1058-1063. https://doi.org/10.1121/1.1910188
- Kee, Y.J. and Shin, S.J. (2015), "Structural dynamic modeling for rotating blades using three dimensional finite elements", J. Mech. Sci. Technol., 29(4), 1607-1618. https://doi.org/10.1007/s12206-015-0332-6
- Lee, S.Y. and Lin, S.M. (1994), "Bending vibrations of rotating nonuniform Timoshenko beams with an elastically restrained root", J. Appl. Mech. T. ASME, 61(4), 949-955. https://doi.org/10.1115/1.2901584
- Lim, I.G. and Lee, I. (2009), "Aeroelastic analysis bearingless rotors with a composite flexbeam", Compos. Struct., 88(4), 570-578. https://doi.org/10.1016/j.compstruct.2008.06.007
- Lin, S.M., Lee, S.Y. and Wang, W.R. (2004), "Dynamic analysis of rotating damped beams with an elastically restrained root", J. Mech. Sci., 46(5), 673-693. https://doi.org/10.1016/j.ijmecsci.2004.05.011
- Loewy, R.G. (1957), "A two-dimensional approximation to the unsteady aerodynamics of rotary wings", J. Aeronaut. Sci., 24(2), 81-92. https://doi.org/10.2514/8.3777
- McCalley, R. (1963), "Rotary inertia correction for mass matrices", Report DIG/SA: 63-73; General Electric Knolls Atomic Power Laboratory, Schenectady, New York, U.S.A.
- Mead, D. (1996), "Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964-1995", J. Sound Vib., 190(3), 495-524. https://doi.org/10.1006/jsvi.1996.0076
- Mead, D. and Parthan, S. (1979), "Free wave propagation in two-dimensional periodic plates", J. Sound Vib., 64(3), 325-348. https://doi.org/10.1016/0022-460X(79)90581-9
- Mead, D. and Yaman, Y. (1991), "The response of infinite periodic beams to point harmonic forces: A flexural wave analysis", J. Sound Vib., 144(3), 507-529. https://doi.org/10.1016/0022-460X(91)90565-2
- Nitzsche, F., D'Assuncao, D. and Junior, C.D.M. (2015), "Aeroelastic control of non-rotating and rotating wings using the dynamic stiffness modulation principle via piezoelectric actuators", J. Intell. Mater. Syst. Struct., 26(13), 1656-1668. https://doi.org/10.1177/1045389X15572011
- Norman, T.R., Shinoda, P.M., Kitaplioglu, C., Jacklin, S.A. and Sheikman, A. (2002), "Low-speed wind tunnel investigation of a full-scale UH-60 rotor system", National Aeronautics and Space Administration Moffett Field CA AMES Research Center, https://apps.dtic.mil/dtic/tr/fulltext/u2/a480625.pdf.
- Pohit, G., Mallik, A. and Venkatesan, C. (1999), "Free out-of-plane vibrations of a rotating beam with non-linear elastomeric constraints", J. Sound Vib., 220(1), 1-25. https://doi.org/10.1006/jsvi.1998.1887
- Rauchenstein Jr., W.J. (2002). "A 3D Theodorsen-based rotor blade flutter model using normal modes", Ph.D. Dissertation, Naval Postgraduate School, California, U.S.A.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley and Sons, New York, U.S.A.
- Singh, M.P. (1985), "Turbine blade dynamics - A probabilistic approach", Vib. Blades Bladed Disk Assemblies, 41-48.
- Theodorsen, T. (1935), "General theory of aerodynamic instability and the mechanism of flutter", NACA-TR-496; Advisory Committee for Aeronautics, Langley, VA, U.S.A.
- Thomas, J. and Abbas, B. (1975), "Finite element model for dynamic analysis of Timoshenko beam", J. Sound Vib., 41(3), 291-299. https://doi.org/10.1016/S0022-460X(75)80176-3
- Ungar, E.E. (1966), "Steady-state responses of one-dimensional periodic flexural systems", J. Acoustical Soc. America, 39(5A), 887-894. https://doi.org/10.1121/1.1909967
- Wood, E.R. and Hilzinger, K. (1963), "A method for determining the fully coupled aeroelastic response of helicopter rotor blades", Proceedings of American Helicopter Society 19th Annual National Forum, Washington, DC, May.
- Yang, S.M. and Tsao, S.M. (1997), "Dynamics of a pretwisted blade under nonconstant rotating speed", Comput. Struct., 62(4), 643-651. https://doi.org/10.1016/S0045-7949(96)00227-1
- Yardimoglu, B. (2010), "A novel finite element model for vibration analysis of rotating tapered Timoshenko beam of equal strength", Finite Elem. Anal. Des., 46(10), 838-842. https://doi.org/10.1016/j.finel.2010.05.003
- Yntema, R.T. (1955), "Simplified procedures and charts for the rapid estimation of bending frequencies of rotating beams", NACA-TN-3459; National Advisory Committee for Aeronautics. Langley Aeronautical Lab., VA, U.S.A.
- Zhou, C.W., Laine, J.P., Ichchou, M.N. and Zine, A.M. (2015), "Wave finite element method based on reduced model for one-dimensional periodic structures", J. Appl. Mech., 07(02), 1550018. https://doi.org/10.1142/S1758825115500180