DOI QR코드

DOI QR Code

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir (Department of Civil Engineering, University of Ibn Khaldoun) ;
  • Zidour, Mohammed (Department of Civil Engineering, University of Ibn Khaldoun) ;
  • Meradjah, Mustapha (Laboratory of Materials and Hydrology, University of Djillali Liabes)
  • 투고 : 2018.05.07
  • 심사 : 2018.08.06
  • 발행 : 2019.01.25

초록

This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

키워드

참고문헌

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704 https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Acton, Q.A., (2013), Issues in Hydrogen, Fuel Cell, Electrochemical, and Experimental Technologies, Scholarly Edition, Atlanta, Georgia, U.S.A.
  4. Ahmadi Asoor, A.A., Valipour, P. and Ghasemi, S.E. (2016), "Investigation on vibration of single-walled carbon nanotubes by variational iteration method", Appl. Nanosci., 6(2), 243-249. https://doi.org/10.1007/s13204-015-0416-8
  5. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  6. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  7. Ait Yahia, S., Atmane, H.A., Houari, M.S.A. and Tounsi, A., (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  8. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  9. Ali-Akbari, H.R. and Firouz Abadi, R.D. (2015), "Nonlinear free vibration of single-walled carbon nanotubes embedded in viscoelastic medium based on asymptotic perturbation method", J. Sci. Eng., 6 (2), 42-58.
  10. Ansari, R. and Hemmatnezhad, M. (2013), "Nonlinear finite element vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory", J. Vib. Control, 19(1), 75-85. https://doi.org/10.1177/1077546311429838
  11. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  12. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H. and Triantafillou, T.C. (2002), "Fiber-reinforced polymer composites for construction-state-of-the-art review", J. Compos. Construct., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
  13. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103
  14. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  15. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  16. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  17. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017b), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  18. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017a), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  19. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  20. Benchohra, M., Driz, Z., Bakora, A. and Tounsi, A. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/SEM.2018.65.1.019
  21. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  22. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  23. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  24. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  25. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  26. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
  27. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  28. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  29. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  30. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  31. Chandra, S., Madhira, R.M. and Iyengar, N.G.R. (1987), "A new model for nonlinear subgrades", Proceedings of 5th ICMM, Roorkee, India.
  32. Chemi, A, Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x
  33. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  34. Choi, S.M. and Awaji, H. (2005), "Nanocomposites: A new material design concept", Sci. Technol. Adv. Mater., 6(1), 2-10. https://doi.org/10.1016/j.stam.2004.06.002
  35. de Azeredo, H.M.C. (2009), "Nanocomposites for food packaging applications", Food Res. Int., 42(9), 1240-1253. https://doi.org/10.1016/j.foodres.2009.03.019
  36. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/SEM.2018.65.3.335
  37. Dinev, D. (2012), "Analytical solution of beam on elastic foundation by singularity functions", Eng. Mech., 19(6), 381-392.
  38. Doyle, J.F. (1997), Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, Springer Science & Business Media, New York, NY, U.S.A.
  39. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  40. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  41. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  42. Gafour, Y., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2013), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Physica E, 48, 118-123. https://doi.org/10.1016/j.physe.2012.11.006
  43. Gay, D. (1987), Materiaux Composites, 5 eme Edition, Hermes-Lavoisier, France.
  44. Gorbunov-Posadov, M.I., Malikova, T.A. and Solomin, V.I. (1973), Analysis of Structures on Elastic Foundation, Stroiizdat, Moscow, Russia.
  45. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/SCS.2017.25.6.717
  46. Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a doublewalled carbon nanotube", Struct. Eng. Mech., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987
  47. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  48. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  49. Harris, P.J.F. (1999), Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge University Press, New York, NY, U.S.A.
  50. Harris, P.J.F. (2009), Carbon Nanotube Science Synthesis, Properties and Applications, Cambridge University Press, New York, NY, U.S.A.
  51. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  52. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Phys., 104(1), 014301. https://doi.org/10.1063/1.2949274
  53. Hetenyi, M. (1961), Beams on Elastic Foundations, University of Michigan Press, Ann Arbor, U.S.A.
  54. Hina, S., Zhang, Y. and Wang, H. (2014), "Characterization of polymeric solutions: A brief overview", Rev. Adv. Mater. Sci., 36(2), 165-176.
  55. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/SCS.2018.28.1.013
  56. Hu, H., Onyebueke, L. and Abatan, A. (2010), "Characterizing and modeling mechanical properties of nanocomposites, review and evaluation", J. Minerals Mater. Characterization Eng., 9(4), 275-319. https://doi.org/10.4236/jmmce.2010.94022
  57. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  58. Kacar, A., Tugba, H.T. and Metin, O.K. (2011), "Free vibration analysis of beams on variable winkler elastic foundation by using the differential transform method", Math. Comput. Appl., 16(3), 773-783.
  59. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/SEM.2018.65.5.621
  60. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/SCS.2017.25.3.361
  61. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  62. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  63. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018c), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/SCS.2018.28.1.099
  64. Karasin, A. and Gultekin, A. (2014), "An approximate solution for plates resting on winkler foundation", J. Civil Eng. Technol., 5(11), 114-124.
  65. Karlicic, D., Kozic, P. and Pavlovic, R. (2015), "Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on reddy and huu-tai formulations", J. Theor. Appl. Mech., 53(1), 217-233. https://doi.org/10.15632/jtam-pl.53.1.217
  66. Kaushik, B.K. and Majumder, M.K. (2015), Carbon Nanotube Based VLSI Interconnects: Analysis and Design, Springer, Germany.
  67. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  68. Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field", J. Phys. Chem. Solids, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022
  69. Kumar, A. and Gupta, R.K. (2003), Fundamentals of Polymers Engineering, Second edition, Revised and Expanded, CRC Press, Florida, U.S.A.
  70. Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
  71. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model. 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  72. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  73. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  74. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  75. Mourelatos, Z.P. and Parsons, M.G. (1987), "A finite element analysis of beams on elastic foundation including shear and axial effects", Comput. Struct., 27(3), 323-331. https://doi.org/10.1016/0045-7949(87)90055-1
  76. Mrazova, M. (2013), "Advanced composite materials of the future in aerospace industry", Incas Bulletin, 5(3), 139-150. https://doi.org/10.13111/2066-8201.2013.5.3.14
  77. Nguyen, T.N., Kim, N. and Lee, J. (2017), "Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation", Structural Eng. Mech., 63(2), 137-146. https://doi.org/10.12989/SEM.2017.63.2.137
  78. Ochsner, A. and Shokuhfar, A. (2013), New Frontier of Nanoparticles and Nanocomposite Materials, Novel Principles and Techniques, Springer, Germany.
  79. Okpala, C.C. (2013), "Nanocomposites: An overview", J. Eng., Res. Develop., 8(11), 17-23.
  80. Okpala, C.C. (2014), "The benefits and applications of nanocomposites", J. Adv. Engg. Tech., 5(4), 12-18.
  81. Rajpurohit, V.K., Gore, N.G. and Sayagavi, V.G. (2014), "Analysis of structure supported on elastic foundation", IJEAT, 4(1), 1-6. https://doi.org/10.14419/ijet.v4i1.3782
  82. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016) "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031
  83. Sachse, S., Gendre, L., Silva, F., Zhu, H., Leszczynska, A., Pielichowski, K., Ermini, V. and Njuguna, J. (2013), "On nanoparticles release from polymer nanocomposites for applications in lightweight automotive components", J. Physics, Conference Series, 429(1), 012046. https://doi.org/10.1088/1742-6596/429/1/012046
  84. Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier Scientific Publishing Company, New York, U.S.A.
  85. Shehata, F., Abdelhameed, M., Fathy, A. and Elmahdy, M. (2011), "Preparation and characteristics of Cu-$Al_2O_3$ nanocomposite", Open J. Metal, 1(2), 25-33. https://doi.org/10.4236/ojmetal.2011.12004
  86. Soltani, P., Bahramian, R. and Saberian, J. (2015), "Nonlinear vibration analysis of the fluid-filled single walled carbon nanotube with the shell model based on the nonlocal elacticity theory", J. Solid Mech., 7 (1), 58-70.
  87. Teodoru, I.B. (2009a), "EBBEF2p - A computer code for analysing beams on elastic foundations", Intersections/Intersect II, 6(1), 28-44.
  88. Teodoru, I.B. (2009b), "Beams on elastic foundation the simplified continuum approach", Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 55(4), 37- 45.
  89. Teodoru, I.B. and Musat, V. (2008), "Beam elements on linear variable two-parameter elastic foundation", Buletinul Institutului Politehnic din lasi., 54(2), 69-78.
  90. Togun, N. and Bagdatli, S.M. (2016), "Nonlinear vibration of a nanobeam on a pasternak elastic foundation based on non local Euler-Bernoulli beam theory", Math. Comput. Appl., 21(3), 1-19.
  91. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  92. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  93. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  94. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
  95. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  96. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerospace Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  97. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/SCS.2018.26.2.125

피인용 문헌

  1. Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle vol.8, pp.1, 2020, https://doi.org/10.12989/anr.2020.8.1.037
  2. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
  3. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  4. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
  5. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
  6. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  7. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.281