수자원분야에서의 기계학습 적용(4)

  • Published : 2019.12.15

Abstract

Keywords

References

  1. Assem, H., Ghariba, S., Makrai, G., Johnson, P., Gill, L., and Pilla, F., (2017). Urban Water Flow and Water Level Prediction based on Deep Learning, Springer.
  2. Granata, F., Gargano, R. and Marinis, G. (2016). Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model. Water, Vol. 8, No. 3, doi:10.3390/w8030069.
  3. Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J. (2015). LSTM : A search space odyssey. Retrieved from https://arxiv.org.abs.1503.04069.
  4. Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. 14th International Conference on Artificial Inteligence and Statistics(AISTATS), Fort Lauderdale, FL, USA, Vol. 15.
  5. Hinton, G.E., and Salakhutdinov, R.R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, Vol. 313, No. 5786, pp. 504-507. https://doi.org/10.1126/science.1127647
  6. Hochreiter, S., Y. Bengio, P. Frasconi, and Schmidhuber, J. (2001). Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies, in A Field Guide to Dynamical Recurrent Neural Networks, edited by S. C. Kremer and J. F. Kolen, IEEE Press.
  7. Huber, W.C., and Dickson, R.E. (1988). Storm Water Management Model. User's Manual ver. 4, U.S. EPA.
  8. Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, Vol. 10, No. 11, doi.org/10.3390/w10111543.
  9. Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis. Journal of the Korean Society of Civil Engineers, Vol. 38, No. 5, pp. 671-683. https://doi.org/10.12652/Ksce.2018.38.5.0671
  10. Kim, H.I., Lee,J.Y., Han,H.Y., and Jo,J.W.(2020) Applying Observed Rainfall and Deep Neural Network for Urban Flood Analysis, J.of Korea Society of Hazarrd Mitigation, Vol.20,No.1 Cacceptid for Publication).
  11. Kingma, D.P., and Ba, J.L. (2015). ADAM : A Method for Stochastic Optimization. ICLR.
  12. Li X., and Willems, P. (2018). A Data-Driven Hybrid Urban Flood Modeling Approach. EPiC Series in Engineering, HIC 2018, 13th International Conference on Hydroinformatics, Vol. 3, pp. 1193-1200.
  13. Mozer, M.C. (2007). A Focused Backpropagation Algorithm for Temporal Pattern Recognition, in Complex Systems (3), edited by Y. Chauvin and D. E. Rumelhart, pp. 349-381, L. Erlbaum Associates Inc., Hillsdale, NJ.
  14. Remesan, R., and Mathew, J. (2015). Hydrological Data Driven Modeling. Springer, Earth System Data and Models.
  15. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Network from Overfitting. Journal of Machine Learning Research, Vol. 15, pp. 1929-1958.
  16. Seoul Metropolitan City. (2015). Comprehensive Plan for Storm and flood Damage Reduction. Korea, Vol. 1, Chapter 3, pp.374-375.
  17. Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, Vol. 54, doi:10.1029/2018WR022643.
  18. Son, A.L., Kim, B.H. and Han, K. Y. (2015). A study on prediction of inundation area considering road network in urban area. Journal of the Korean Society of Civil Eng., Vol. 35, No. 2, pp.307-318. https://doi.org/10.12652/Ksce.2015.35.2.0307
  19. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929-1958.
  20. Trottenberg, U., Oosterlee, C., and Schuller, A. (2000). Multigrid, Academic Press.
  21. Zhou, J., Peng, T., Zhang, C. and Sun, N. (2018). Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting. Water, Vol. 10, No. 5, doi:10.3390/w10050628.