DOI QR코드

DOI QR Code

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Algeria Faculty of Technology, Civil Engineering Department) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
  • Received : 2019.06.03
  • Accepted : 2019.08.20
  • Published : 2019.11.25

Abstract

Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. Akgoz, B. and Civalek, O . (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039
  2. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanica, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
  3. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_{2}$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  4. Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432
  5. Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462.
  6. Ansari, R., Sahmani, S. and Rouhi, H. (2011), "Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions", Phys. Lett. A, 375, 1255-1263. https://doi.org/10.1016/j.physleta.2011.01.046
  7. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, Int. J., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  8. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  10. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2
  11. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with $Sio_{2}$ nanoparticles subjected to blast load", Adv. Concrete Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051
  12. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  13. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  14. Bocko, J. and Lengvarsky, P. (2014), "Vibration of single-walled carbon nanotubes by using nonlocal theory", Am. J. Mech. Eng., 2, 195-198. https://doi.org/10.12691/ajme-2-7-5
  15. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
  16. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
  17. Civalek, O., Demir, C. and Akgoz, B. (2009), "Static analysis of single-walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci. (IJEAS), 2, 47-56.
  18. Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019
  19. Demir, C . and Civalek, O. (2016), "Nonlocal finite element formulation for vibration", Int. J. Eng. Appl. Sci. (IJEAS), 8, 109-117.
  20. Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057
  21. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179
  22. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  24. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag.
  25. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  26. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036
  27. Falvo, M.R., Clary, G.J., Taylor Ii, R.M., Chi, V., Brooks Jr, F.P., Washburn, S. and Superfine, R. (1997), "Bending and buckling of carbon nanotubes under large strain", Nature, 389, 532-534. https://doi.org/10.1038/39282
  28. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  29. Georgantzinos, S.K., Giannopoulos, G.I. and Anifantis, N.K, (2009), "An efficient numerical model for vibration analysis of single-walled carbon nanotubes", Computat. Mech., 43(6), 731-741. https://doi.org/10.1007/s00466-008-0341-8
  30. Golabchi, H, Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by $SiO_{2}$ nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431
  31. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Computat. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007
  32. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373
  33. Hajmohammad, H.M., Farrokhian, A. and Kolahchi, R. (2018a), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aeros. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
  34. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018b), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  35. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  36. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008
  37. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Low-dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037
  38. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
  39. Hussain, M. and Naeem, M.N. (2018a), "Vibration behavior of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", In: Chapter, Novel Nanomaterials - Synthesis and Applications. ISBN 978-953-51-5896-7,10.5772/intechopen.73503.
  40. Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", In: Chapter, Advance Testing and Engineering, ISBN 978-953-51-6706-8.
  41. Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. https://doi.org/10.1016/j.compositesb.2018.12.144
  42. Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", In: Chapter, Carbon Nanotubes, ISBN 978-1-78984-402-3.
  43. Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4), 045114. https://doi.org/10.1063/1.4979112
  44. Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018a), "Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach", Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320
  45. Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2018b), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", In: Chapter, Computational Fluid Dynamics: Basic Instruments and Applications in Science, ISBN 978-953-51-5706-9. https://doi.org/10.5772/intechopen.72172
  46. Hussain, M., Naeem, M.N. and Isvandzibaei, M.R. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406217753459. https://doi.org/10.1177/0954406217753459
  47. Hussain, M., Naeem, M.N. and Taj, M. (2019), "Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406219855095. https://doi.org/10.1177/0954406219855095
  48. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354 (7), 56-58. https://doi.org/10.1038/354056a0
  49. Jassas, M.R. Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated $SiO_{2}$ nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263
  50. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  51. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  52. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  53. Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  54. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  55. Kolahchi, R. and Bidgoli, A.M.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  56. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x
  57. Kolahchi, R, Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  58. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  59. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  60. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  61. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017c), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-viscopiezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 1099636217731071. https://doi.org/10.1177/1099636217731071
  62. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygrothermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042
  63. Lee, H.L. and Chang, W.J. (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099
  64. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  65. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
  66. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
  67. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
  68. Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  69. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Results Phys., 1, 17-25. https://doi.org/10.1016/j.rinp.2011.06.002
  70. O'connell, M.J. (2006), Carbon Nanotubes: Properties and Applications, CRC press.
  71. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  72. Ren, Z., Lan, Y. and Wang, Y. (2011), "Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices", In: Carbon Nanostructures, Springer, Berlin, Germany.
  73. Semmah, A., Heireche, H., Bousahla, A.A. and Toumsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  74. Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  75. Soltani, P., Kassaei, A., Taherian, M.M. and Farshidianfar, A, (2012), "Vibration of wavy single-walled carbon nanotubes based on nonlocal Euler Bernoulli and Timoshenko models", Int. J. Adv. Struct. Eng., 4(1), 3. https://doi.org/10.1186/2008-6695-4-3
  76. Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753
  77. Swain, A., Roy, T. and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. Appl. Res. Mech, Eng., 2, 129-133.
  78. Thongyothee, C. and Chucheepsakul, S. (2008), "Finite element modeling of van der Waals interaction for elastic stability of multi-walled carbon nanotubes", Adv. Mater. Res., 55, 525-528. https://doi.org/10.4028/www.scientific.net/AMR.55-57.525
  79. Thongyothee, C., Chucheepsakul, S. and Li, T. (2013), "Nonlocal elasticity theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257
  80. Toupin, R.A. (1964), "Theory of elasticity with couple stresses", Arch. Ration. Mech. Anal., 17, 85-112. https://doi.org/10.1007/BF00253050
  81. Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B: Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
  82. Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/15/2/050
  83. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035
  84. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
  85. Yayli, M.O. (2013), "Torsion of nonlocal bars with equilateral triangle cross sections", J. Computat. Theor. Nanosci., 10, 376-379. https://doi.org/10.1166/jctn.2013.2707
  86. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
  87. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_{2}$ nano-particles", Wind Struct., Int. J., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  88. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_{2}$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009
  89. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  90. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.

Cited by

  1. Investigation of Mechanical Numerical Simulation and Expansion Experiment of Expandable Liner Hanger in Oil and Gas Completion vol.2020, 2019, https://doi.org/10.1155/2020/9375835
  2. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
  3. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  4. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.343
  5. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2019, https://doi.org/10.12989/sem.2020.76.3.413
  6. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  7. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
  8. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.001
  9. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.025
  10. On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
  11. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  12. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  13. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.151
  14. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
  15. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  16. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.055
  17. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  18. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.203