DOI QR코드

DOI QR Code

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Received : 2019.05.03
  • Accepted : 2019.08.10
  • Published : 2019.11.25

Abstract

The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.

Keywords

References

  1. Arani, A.G., Kolahchi, R. and Maraghi, Z.K. (2013), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14-15), 7685-7707. https://doi.org/10.1016/j.apm. 2013.03.020
  2. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  3. Arani, A.G., Jafari, G.S. and Kolahchi, R. (2017), "Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator", Microsyst. Technol., 23(5), 1509-1535. https://doi.org/10.1007/s00542-016-3095-9
  4. Asadi, H., Bodaghi, M., Shakeri, M. and Aghdam, M.M. (2013), "On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams", Aerosp. Sci. Technol., 31(1), 73-86. https://doi.org/10.1016/j.ast.2013.09.008
  5. Bathe, K.J. (2002), Finite Element Procedures, Prentice-Hall of India Private Ltd., New Delhi, India.
  6. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  7. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  8. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  9. Bhattacharjee, A. and Nanda, B.K. (2018), "Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite", IOP Conference Series: Materials Science and Engineering, 348(1), IOP Publishing. https://doi.org/10.1088/1757-899X/348/1/012017
  10. Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27(7), 897-913. https://doi.org/10.1016/0020-7683(91)90023-9
  11. Birla, S., Mondal, D.P., Das, S., Kashyap, D.K. and Ch, V.A. (2017), "Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam", Mater. Sci. Eng.: A, 685, 213-226. https://doi.org/10.1016/j.msea.2016.12.131
  12. Crawley, E.F. (1979), "The natural modes of graphite/epoxy cantilever plates and shells, J. Compos. Mater., 13(3), 195-205. https://doi.org/10.1177/002199837901300302
  13. Dalbehera, S. (2016), "Effect of Cenosphere on the Mechanical and Tribological Properties of Natural Fiber Reinforced Hybrid Composite, Ph.D. Thesis.
  14. Ferreira, J.A.M., Borrego, L.P., Costa, J.D.M. and Capela, C. (2013), "Fatigue behaviour of nanoclay reinforced epoxy resin composites", Compos. Part B: Eng., 52, 286-291. https://doi.org/10.1016/j.compositesb.2013.04.003
  15. Ghannadpour, S.A.M. (2018a), "A Variational Formulation to Find Finite Element Bending, Buckling and Vibration Equations of Nonlocal Timoshenko Beams", Iran. J. Sci. Technol., Transact. Mech. Eng., 1-10. https://doi.org/10.1007/s40997-018-0172-y
  16. Ghannadpour, S.A.M. (2018b), "Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity", J. Appl. Computat. Mech., 4(1), 16-26. https://doi.org/10.22055/JACM.2017.21915.1120
  17. Ghannadpour, S.A.M. and Bijan, M. (2011), "Vibration of nonlocal euler beams using Chebyshev polynomials", Key Eng.Mater., 471-472, 1016-1021. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1016
  18. Ghannadpour, S.A.M. and Mohammadi, B. (2010), "Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory using Chebyshev polynomials", Adv. Mater. Res., 123, 619-622. https://doi.org/10.4028/www.scientific.net/AMR.123-125.619
  19. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  20. Jena, H., Pradhan, A.K. and Pandit, M.K. (2014), "Effect of cenosphere filler on damping properties of bamboo-epoxy laminated composites", Adv. Compos. Lett., 23(1), 096369351402300103. https://doi.org/10.1177/096369351402300103
  21. Jones, R.M. (1975), Mechanics of Composite Materials, Taylor & Francis, PA, USA.
  22. Katona, B., Szebenyi, G. and Orbulov, I.N. (2017), "Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams", Mater. Sci. Eng. A, 679, 350-357. https://doi.org/10.1016/j.msea.2016.10.061
  23. Khoshnoud, P. and Abu-Zahra, N. (2015), "Effect of cenosphere fly ash on the thermal, mechanical, and morphological properties of rigid PVC foam composites", J. Res. Updates Polym. Sci., 4(1). https://doi.org/10.6000/1929-5995.2015.04.01.1
  24. Kushnoore, S., Varma, G.A., Akhil, K., Jathin, C. and Reddy, M.M. (2018), "Experimental investigation on mechanical behaviour of cenosphere reinforced epoxy composites", Int. J. Mech. Eng. Technol., 9(4), 73-81.
  25. Lin, Y., Zhang, Q., Ma, X. and Wu, G. (2016), "Mechanical behavior of pure Al and Al-Mg syntactic foam composites containing glass cenospheres", Compos. Part A: Appl. Sci. Manuf., 87, 194-202. https://doi.org/10.1016/j.compositesa.2016.05.001
  26. Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60(1), 95-101. https://doi.org/10.1016/0045-7949(95)00358-4
  27. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
  28. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Methods Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  29. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  30. Mohammadi, B. and Ghannadpour, S.A.M. (2011), "Energy approach vibration analysis of nonlocal Timoshenko beam theory", Procedia Eng., 10, 1766-1771. https://doi.org/10.1016/j.proeng.2 011.04.294
  31. Naidu, N.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002
  32. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, (2nd Ed.), CRC Press, Bocaraton, FL, USA.
  33. Reegan, S. and Arulmurugan, S. (2016), "Vibration and damping Property Analysis of nanoclay filled polymer composites", Int. J. Emerg. Technol. Comput. Sci. Electron. (IJETCSE).
  34. Rohatgi, P.K., Kim, J.K., Gupta, N., Alaraj, S. and Daoud, A. (2006), "Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique", Compos. Part A: Appl. Sci. Manuf., 37(3), 430-437. https://doi.org/10.1016/j.compositesa.2005.05.047
  35. Sivasaravanan, S. and Raja, V.K.B. (2014), "Impact properties of epoxy/glass fiber/nano clay composite materials", IOSR J. Mech. Civ. Eng., 39-41.
  36. Szekrenyes, A. (2014), "Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis", J. Sound Vib., 333(20), 5141-5164. https://doi.org/10.1016/j.jsv.2014.05.021
  37. Szekrenyes, A. (2016), "Natural vibration-induced parametric excitation in delaminated Kirchhoff plates", J. Compos. Mater., 50(17), 2337-2364. https://doi.org/10.1177/0021998315603111
  38. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  39. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2016), "Beam buckling analysis by nonlocal integral elasticity finite element method", Int. J. Struct. Stabil. Dyn., 16(6), 1550015. https://doi.org/10.1142/S0219455415500157
  40. Thakur, S. and Chauhan, S.R. (2015), "Experimental investigation of cenosphere particulate filled E-glass fiber reinforced vinylester composites under dry and water lubricated sliding conditions", Ind. J. Eng. and Mater. Sci., 22(6), 669-678.
  41. Topal, U. (2006), "Mode-frequency analysis of laminated spherical shell", Department of Civil Engineering Karadeniz Technical University. https://doi.org/10.1.1.542.6218
  42. Topal, U. (2009), "Frequency optimization of laminated general quadrilateral and trapezoidal thin plates", Mater. Des., 30(9), 3643-3652. https://doi.org/10.1016/j.matdes.2009.02.014
  43. Topal, U. and Uzman, U. (2006), "Free vibration analysis of laminated plates using first-order shear deformation theory", Vibration Problems ICOVP 2006, Dordrecht, Netherlands pp. 493-498.
  44. Xia, X., Chen, X., Zhang, Z., Chen, X., Zhao, W., Liao, B. and Hur, B. (2014), "Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres", Mater. Des., 56, 353-358. https://doi.org/10.1016/j.matdes.2013.11.040
  45. Zhang, Q., Lin, Y., Chi, H., Chang, J. and Wu, G. (2018), "Quasistatic and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure", Compos. Struct., 183, 499-509. https://doi.org/10.1016/j.compstruct.2017.05.024

Cited by

  1. Isogeometric analysis of functionally graded CNT-reinforced composite plates based on refined plate theory vol.34, pp.9, 2019, https://doi.org/10.1007/s12206-020-0821-0