DOI QR코드

DOI QR Code

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M. (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Shojaee, T. (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Mohammadi, B. (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Kolahchi, R. (Institute of Research and Development, Duy Tan University)
  • Received : 2019.04.29
  • Accepted : 2019.08.03
  • Published : 2019.11.25

Abstract

This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

Keywords

References

  1. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  2. Ansari, R. and Gholami, R. (2016), "Size-dependent buckling and postbuckling analyses of first-order shear deformable magnetoelectro-thermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Struct. Stab. Dyn., 17(1), 1750014. https://doi.org/10.1142/S0219455417500146
  3. Attia, A., Anis Bousahla, A., Tounsi, A., Hassan, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453
  4. Baseri, V., Soleimani Jafari, G. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., Int. J., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  5. Chemi, A., Heireche, H., Zidour, M., Kaddour, R. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  6. Ebrahimi, F. and Barati, M.R. (2016a), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229
  7. brahimi, F. and Barati, M.R. (2016b), "An exact solution for buckling analysis of embedded piezo- electro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  8. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017a), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001
  9. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017b), "Buckling temperature of a single-walled carbon nanotube using nonlocal Timoshenko beam model", J. Computat. Theor. Nanosci., 7(11), 2367-2371. https://doi.org/10.1166/jctn.2010.1621
  10. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media.
  11. Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2015), "Analytical modeling of wave propagation in viscoelastic functionally graded carbon nanotubes reinforced piezoelectric microplate under electro-magnetic field", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 231(1), 17-33. https://doi.org/10.1177/0954406215627830
  12. Ghorbanpour Arani, A., Jamali, M., Ghorbanpour-Arani, A.H., Kolahchi, R. and Mosayyebi, M. (2016a), "Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(2), 387-403. https://doi.org/10.1177/0954406215627830
  13. Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2016b), "Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory", Compos. Part B, 95, 209-224. https://doi.org/10.1016/j.compositesb.2016.03.077
  14. Ghugal, Y.M. and Sayyad, A.S. (2010), "A static flexure of thick isotropic plates using trigonometric shear deformation theory", J. Solid Mech., 2(1), 79-90.
  15. Golmakani, M.E. and Vahabi, H. (2017), "Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions", Microsyst. Technol. 23(8), 3613-3628. https://doi.org/10.1007/s00542-016-3210-y
  16. Jafari Mehrabadi, S., Sobhani Aragh, B., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B, 43, 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
  17. Jamali, M., Shojaee, T., Kolahchi, R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., Int. J., 22(3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691
  18. Jamali, M., Arani, A.G., Mosayyebi, M., Kolahchi, R. and Esfahani, R.T. (2017), "Wave propagation behavior of coupled viscoelastic FG-CNTRPC micro plates subjected to electromagnetic fields surrounded by orthotropic visco-Pasternak foundation", Microsyst. Technol., 23(8), 3791-3816. https://doi.org/10.1007/s00542-016-3232-5
  19. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  20. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x
  21. Lam, K.Y., Hung, K.C. and Chow, S.T. (1989), "Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method", Appl. Acoust., 28(1), 49-60. https://doi.org/10.1016/0003-682X(89)90030-3
  22. Liew, K.M., Hung, K.C. and Lim, M.K. (1993), "Method of domain decomposition in vibrations of mixed edge anisotropic plates", Int. J. Solids Struct., 30(23), 3281-3301. https://doi.org/10.1016/0020-7683(93)90114-M
  23. Liew, K.M., Ng, T.Y. and Kitipornchai, S. (2001), "A semianalytical solution for vibration of rectangular plates with abrupt thickness variation", Int. J. Solids Struct., 38(28), 4937-4954. https://doi.org/10.1016/S0020-7683(00)00329-2
  24. Liew, K.M., Kitipornchai, S., Leung, A.Y.T. and Lim, C.W. (2003), "Analysis of the free vibration of rectangular plates with central cut-outs using the discrete Ritz method", Int. J. Mech. Sci., 45(5), 941-959. https://doi.org/10.1016/S0020-7403(03)00109-7
  25. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  26. Liu, C., Ke, L.-L., Yang, J., Kitipornchai, S. and Wang, Y.-S. (2016), "Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates", Theor. Appl. Mech. Lett., 6(6), 253-267. https://doi.org/10.1142/S0219455413500673
  27. Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlinear Dyn., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x
  28. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004
  29. Pan, Z., Cheng, Y. and Liu, J. (2013), "A semi-analytical analysis of the elastic buckling of cracked thin plates under axial compression using actual non-uniform stress distribution", Thin-Wall. Struct., 73, 229-241. https://doi.org/10.1016/j.tws.2013.08.007
  30. Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2015), "Nonlinear response of piezoelectric nanocomposite plates: Large deflection, post-buckling and large amplitude vibration", Int. J. Appl. Mech., 7(5), 1550074. https://doi.org/10.1142/S175882511550074X
  31. Sahmani, S., Aghdam, M.M. and Bahrami, M. (2016), "Sizedependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures", Int. J. Mech. Sci., 107, 170-179. https://doi.org/10.1016/j.ijmecsci.2016.01.014
  32. Sekkal, M., Fahsi, B., Tounsi, A. and Hassan, S. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389
  33. Shen, H.-S. and Zhang, C.-L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  34. Soleimani, A., Naei, M.H. and Mashhadi, M.M. (2017), "Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory", Results Phys., 7, 1299-1307. https://doi.org/10.1016/j.rinp.2017.03.003
  35. Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carb on nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  36. Thai, S., Thai, H.-T., Vo, T.P. and Lee, S. (2018), "Postbuckling analysis of functionally graded nanoplates based on nonlocal theory and isogeometric analysis", Compos. Struct., 201, 13-20. https://doi.org/10.1016/j.compstruct.2018.05.116
  37. Tounsi, A., Benguediab, S., Bedia, E.A.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  38. Tung, H.V. (2017), "Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints", J. Therm. Stresses, 40(5), 641-663. https://doi.org/10.1080/01495739.2016.1254577
  39. Wang, K.F. and Wang, B.L. (2013), "Effect of surface energy on the non-linear postbuckling behavior of nanoplates", Int. J. Non-Linear Mech., 55, 19-24. https://doi.org/10.1016/j.ijnonlinmec.2013.04.004
  40. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025
  41. Youcef, D.O., Abdelhakim, K., Benzair, A., Anis Bousahla, A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
  42. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal firstorder theory", Adv. Nano Res., Int. J., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309

Cited by

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157