DOI QR코드

DOI QR Code

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman (Al-Mustansiriah University, Engineering Collage) ;
  • Fenjan, Raad M. (Al-Mustansiriah University, Engineering Collage) ;
  • Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
  • 투고 : 2019.08.19
  • 심사 : 2019.10.20
  • 발행 : 2019.09.25

초록

This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

키워드

과제정보

연구 과제 주관 기관 : Mustansiriyah university

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

참고문헌

  1. Ahankari, S.S. and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  3. Allahkarami, F. and Nikkhah-Bahrami, M. (2018), "The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory", Mech. Adv. Mater. Struct., 25(12), 995-1008. https://doi.org/10.1080/15376494.2017.1323144
  4. Aragh, B.S. (2017), "Mathematical modelling of the stability of carbon nanotube-reinforced panels", Steel Compos. Struct., Int. J., 24(6), 727-740. https://doi.org/10.12989/scs.2017.24.6.727
  5. Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., Int. J., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573
  6. Barati, M.R. and Zenkour, A.M. (2018a), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
  7. Barati, M.R. and Zenkour, A.M. (2018b), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280
  8. Barati, M.R. and Zenkour, A.M. (2018c), "Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects", Compos. Struct., 184, 497-505. https://doi.org/10.1016/j.compstruct.2017.10.019
  9. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  10. Chaudhary, S., Sahu, S.A. and Singhal, A. (2017), "Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum", Acta Mechanica, 228(2), 495-529. https://doi.org/10.1007/s00707-016-1708-0
  11. Chaudhary, S., Sahu, S.A., Singhal, A. and Nirwal, S. (2019a), "Interfacial imperfection study in presstressed rotating multiferroic cylindrical tube with wave vibration analytical approach", Mater. Res. Express, 6(10), 105704. https://doi.org/10.1088/2053-1591/ab3880
  12. Chaudhary, S., Sahu, S.A., Dewangan, N. and Singhal, A. (2019b), "Stresses produced due to moving load in a prestressed piezoelectric substrate", Mech. Adv. Mater. Struct., 26(12), 1028-1041. https://doi.org/10.1080/15376494.2018.1430265
  13. Chaudhary, S., Singhal, A. and Sahu, S.A. (2019c), "Influence of the Imperfect Interface on Love-Type Mechanical Wave in a FGPM Layer", J. Solid Mech., 11(1), 201-209. https://doi.org/10.22034/JSM.2019.664229
  14. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  15. Ebrahimi, F. and Barati, M.R. (2017), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., Int. J., 6(2), 93-128. https://doi.org/10.12989/amr.2017.6.2.093
  16. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., Int. J., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465
  17. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
  18. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
  19. Ebrahimi, F. and Habibi, S. (2018), "Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 25(5), 425-438. https://doi.org/10.1080/15376494.2017.1285453
  20. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279
  21. Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
  22. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  23. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
  24. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
  25. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
  26. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotubereinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  27. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., Int. J., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
  28. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
  29. Lin, F., Yang, C., Zeng, Q.H. and Xiang, Y. (2018), "Morphological and mechanical properties of graphenereinforced PMMA nanocomposites using a multiscale analysis", Computat. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
  30. Mohammadimehr, M., Monajemi, A.A. and Afshari, H. (2017), "Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams", Microsyst. Technol., 1-15. https://doi.org/10.1007/s00542-017-3682-4
  31. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Systm. Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
  32. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425
  33. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
  34. Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: a review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481
  35. Nirwal, S., Sahu, S.A., Singhal, A. and Baroi, J. (2019), "Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect", Compos. Part B: Eng., 167, 434-447. https://doi.org/10.1016/j.compositesb.2019.03.014
  36. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
  37. Reddy, R.M.R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions", Aerosp. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019
  38. Rostami, R., Mohammadimehr, M., Ghannad, M. and Jalali, A. (2018), "Forced vibration analysis of nanocomposite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties", Theor. Appl. Mech. Lett., 8(2), 97-108. https://doi.org/10.1016/j.taml.2018.02.005
  39. Sahmani, S and Aghdam, M.M. (2017), "Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams", Compos. Struct., 179, 77-88. https://doi.org/10.1016/j.compstruct.2017.07.064
  40. Sahu, S.A., Singhal, A. and Chaudhary, S. (2017), "Influence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces", J. Solid Mech., 555-567.
  41. Sahu, S.A., Singhal, A. and Chaudhary, S. (2018), "Surface wave propagation in functionally graded piezoelectric material: an analytical solution", J. Intel. Mater. Syst. Struct., 29(3), 423-437. https://doi.org/10.1177/1045389X17708047
  42. Semmah, A., Beg, O.A., Mahmoud, S.R., Heireche, H. and Tounsi, A. (2014), "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv. Mater. Res., Int. J., 3(2), 77-89. https://doi.org/10.12989/amr.2014.3.2.077
  43. Shenas, A.G., Ziaee, S. and Malekzadeh, P. (2018), "A unified higher-order beam theory for free vibration and buckling of fgcnt-reinforced microbeams embedded in elastic medium based on unifying stress-strain gradient framework", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 469-492. https://doi.org/10.1007/s40997-018-0171-z
  44. Singh, M.K., Sahu, S.A., Singhal, A. and Chaudhary, S. (2018), "Approximation of surface wave velocity in smart composite structure using Wentzel-Kramers-Brillouin method", J. Intel. Mater. Syst. Struct., 29(18), 3582-3597. https://doi.org/10.1177/1045389X18786464
  45. Singhal, A., Sahu, S.A. and Chaudhary, S. (2018a), "Approximation of surface wave frequency in piezocomposite structure", Compos. Part B: Eng., 144, 19-28. https://doi.org/10.1016/j.compositesb.2018.01.017
  46. Singhal, A., Sahu, S.A. and Chaudhary, S. (2018b), "Liouville-Green approximation: An analytical approach to study the elastic waves vibrations in composite structure of piezo material", Compos. Struct., 184, 714-727. https://doi.org/10.1016/j.compstruct.2017.10.031
  47. Singhal, A., Sahu, S., Chaudhary, S. and Baroi, J. (2019), "Initial and couple stress influence on the surface waves Transmission in material layers with imperfect interface", Mater. Res. Express, 6(10), 105713. https://doi.org/10.1088/2053-1591/ab40e2
  48. Wang, X., Yang, H., Song, L., Hu, Y., Xing, W. and Lu, H. (2011), "Morphology, mechanical and thermal properties of graphene-reinforced poly (butylene succinate) nanocomposites", Compos. Sci. Technol., 72(1), 1-6. https://doi.org/10.1016/j.compscitech.2011.05.007
  49. Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Thin-Wall. Struct., 108, 225-233. https://doi.org/10.1016/j.tws.2016.08.024
  50. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
  51. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
  52. Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044

피인용 문헌

  1. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389