DOI QR코드

DOI QR Code

Experimental and numerical prediction of the weakened zone of a ceramic bonded to a metal

  • Zaoui, Bouchra (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Baghdadi, Mohammed (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Mechab, Belaid (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Serier, Boualem (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Belhouari, Mohammed (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
  • 투고 : 2019.02.26
  • 심사 : 2020.01.27
  • 발행 : 2019.12.25

초록

In this study, a three-dimensional Finite Element Model has been developed to estimate the size of the weakened zone in a bi-material a ceramic bonded to metal. The calculations results were compared to those obtained using Scanning Electron Microscope (SEM). In the case of elastic-plastic behaviour of the structure, it has been shown that the simulation results are coherent with the experimental findings. This indicates that Finite Element modeling allows an accurate prediction and estimation of the weakening effect of residual stresses on the bonding interface of Alumina. The obtained results show us that the three-dimensional numerical simulation used by the Finite Element Method, allows a good prediction of the weakened zone extent of a ceramic, which is bonded with a metal.

키워드

참고문헌

  1. An, X.M., Zhao, Z.Y., Zhang, H.H. and He, L. (2013), "Modeling bimaterial interface cracks using the numerical manifold method", Eng. Anal. Boundary Elem., 37(2), 464-474. https://doi.org/10.1016/j.enganabound.2012.11.014
  2. Besevic, M. (2012), "Experimental investigation of residual stresses in cold formed steel sections", Steel Compos. Struct., Int. J., 12(6), 465-489. https://doi.org/10.12989/scs.2012.12.6.465
  3. Boutabout, B., Chama, M., Bachir, B.B., Serier, B. and Lousdad, A. (2009), "Effect of thermomechanical loads on the propagation of crack near the interface brittle/ductile", Computat. Mater. Sci., 46(4), 906-911. https://doi.org/10.1016/j.commatsci.2009.04.039
  4. Cazajus, V., Seguy, S., Welemane, H. and Karama, M. (2012), "Residual stresses in a ceramic-metal composite", Appl. Mech. Mater., 146, 185-196. https://doi.org/10.4028/www.scientific.net/AMM.146.185
  5. Chama, M., Boutabout, B., Lousdad, A., Bensmain, W. and Bouiadjra, B.A.B. (2014), "Crack propagation and deviation in bi-materials under thermo-mechanical loading", Struct. Eng. Mech., Int. J., 50(4), 441-457 https://doi.org/10.12989/sem.2014.50.4.441
  6. Charles, Y., Hild, F., Duval, J. and Roux, S. (2005), "Analyse d'un mode de vieillissement dans un assemblage ceramique/metal", Mecanique & Industries, 6(1), 101-115. https://doi.org/10.1051/meca:2005011
  7. Datta, D., Tomar, V. and Varma, A.H. (2018), "A path independent energy integral approach for analytical fracture strength of steel-concrete structures with an account of interface effects", Eng. Fract. Mech., 204, 246-267. https://doi.org/10.1016/j.engfracmech.2018.10.011
  8. Doitrand, A. and Leguillon, D. (2018), "3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending", Int. J. Solids Struct., 143(15), 175-182. https://doi.org/10.1016/j.ijsolstr.2018.03.005
  9. England, A.H. (1965), "A crack between dissimilar media", J. Appl. Mech., 32, 400-402. https://doi.org/10.1115/1.3625813
  10. Erdogan, F. and Biricikoglu, V. (1973), "Two bonded half planes with a crack going through the interface", Int. J. Eng. Sci., 11(7), 745-766. https://doi.org/10.1016/0020-7225(73)90004-9
  11. Guipont, V. (1994), "Determinations experimentales de contraintes residuelles au sein d'assemblages ceramique-metal realises par brassage : application au couple nitrure silicium-acier doux" , These de doctorat, Ecole Centrale de Lyon.
  12. Hattali, M.L. (2009), "Caracterisation et modelisation thermomecanique des assemblages Metal-Ceramique elabores par thermocompression", These de doctorat, Ecole Centrale de Lyon.
  13. Hattali, M.L., Valette, S., Ropital, F., Stremsdoerfer, G., Mesrati, N. and Treheux, D. (2009a), "Study of SiC-nickel alloy bonding for high temperature applications", J. Eur. Ceramic Soc., 29(4), 813-819. https://doi.org/10.1016/j.jeurceramsoc.2008.06.035
  14. Hattali, M.L., Valette, S., Ropital, F., Mesrati, N. and Treheux, D. (2009b), "Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy biomaterials", J. Mater. Sci., 44, 3198-3210. https://doi.org/10.1007/s10853-009-3426-7
  15. Haussonne, J.M., Carry, C., Bowen, P. and Barton, J. (2005), "Ceramique Et Verres : Principales Et Techniques D'elaboration", Lausanne : Presses polytechniques et universitaires Romandes, Paris, 6, 446.
  16. Hu, X.F., Shen, Q.S., Wang, J.N., Yao, W.A. and Yang, S.T. (2017), "A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface", Appl. Mathe. Model., 50, 361-379. https://doi.org/10.1016/j.apm.2017.05.046
  17. Hutchinson, J.W. and Suo, Z. (1991), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 29, 63-191. https://doi.org/10.1016/S0065-2156(08)70164-9
  18. Hwang, I.H., Heoung, J.Ch., Hong, I.P., Yong, B.P. and Yoon, J.K. (2015), "Change of transmission characteristics of FSSs in hybrid composites due to residual stresses", Steel Compos. Struct., Int. J., 19(6), 1501-1510. https://doi.org/10.12989/scs.2015.19.6.1501
  19. Hsueh, C.H. and Evans, A.G. (2006), "Residual stresses in meta/ceramic bonded strips", J. Am. Ceramic Soc., 68(5), 241-248. https://doi.org/10.1111/j.1151-2916.1985.tb15316.x
  20. Itou, S. (2007), "Stress intensity factors for an interface crack between an epoxy and aluminium composite plate", Struct. Eng. Mech., Int. J., 26(1), 99-109. https://doi.org/10.12989/sem.2007.26.1.099
  21. Jarzabek, D.M. (2018), "The impact of weak interfacial bonding strength on mechanical properties of metal matrix-ceramic reinforced composites", Compos. Struct., 201, 352-362. https://doi.org/10.1016/j.compstruct.2018.06.071
  22. Jarzabek, D.M., Chmielewski, M., Dulnik, J. and Strojny-Nedza, A. (2016), "The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites", J. Mater. Eng. Perform., 25(8), 3139-3145. https://doi.org/10.1007/s11665-016-2107-3
  23. Karlson & Sorensen (2007), ABAQUS Standard Version 6.9 User's manual, Inc., Hibbitt.
  24. Li, F.Z., Shih, C.F. and Needleman, A. (1985), "A comparaison of methods for calculating energy release rate", Eng. Fract. Mech., 21(2), 405-421. https://doi.org/10.1016/0013-7944(85)90029-3
  25. Liang, K.M., Orange, G. and Fantozzi, G. (1990), "Evaluation by indentation of fracture toughness of ceramic materials", J. Mater. Sci., 25(1), 207-214. https://doi.org/10.1007/BF00544209
  26. Liu, Z., Chen, X., Yu, D. and Wang, X. (2017), "Analysis of semi-elliptical surface cracks in the interface of bimaterial plates under tension and bending", Theor. Appl. Fract. Mech., 93, 155-169. https://doi.org/10.1016/j.tafmec.2017.07.019
  27. Ma, L., He, R., Zhang, J. and Shaw, B. (2013), "A simple model for the study of the tolerance of interfacial crack under thermal load", Acta Mech., 224(7), 1571-1577. https://doi.org/10.1007/s00707-013-0820-7
  28. Ouinas, D., Bouiadjra, B.B., Serier, B. and Vin, J. (2008), "Influence of bimaterial interface on kinking behaviour of a crack growth emanating from notch", Computat. Mater. Sci., 41(4), 508-514. https://doi.org/10.1016/j.commatsci.2007.05.010
  29. Rice, J.R. (1988), "Elastic fracture mechanics concepts for interfacial cracks", J. Appl. Mech., 55(1), 98-103. https://doi.org/10.1115/1.3173668
  30. Serier, B., Bouiadjra, B.B., Belhouari, M. and Treheux, D. (2011), "Experimental analysis of the strength of silver-alumina junction elaborated at solid state bonding", Mater. Des., 32(7), 3750-3755. https://doi.org/10.1016/j.matdes.2011.03.047
  31. Shih, C.F., Moran, B. and Nakamura, T. (1986), "Enargy release rate along a three dimensional crack front in a thermally stressed body", Int. J. Fract., 30(2), 79-102. https://doi.org/10.1007/BF00034019
  32. Sih, G.C. and Rice, J.R. (1965), "Discussion of the bending of plates of dissimilar materials with cracks", J. Appl. Mech., 32(2), 464-466. https://doi.org/10.1115/1.3625840
  33. Wu, J. and Lee, C.C. (2016), "The growth and tensile deformation behavior of the silver solid solution phase with zinc", Mater. Sci. Eng.: A ,668, 160-165. https://doi.org/10.1016/j.msea.2016.05.061
  34. Xu, C., Qin, T., Yuan, L. and Noda, N.A. (2008), "Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface", Struct. Eng. Mech., Int. J., 30(3), 317-330. https://doi.org/10.12989/sem.2008.30.3.317
  35. Zhang, H. and Qiao, P. (2017), "An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading", Eng. Fract. Mech., 189, 81-97. https://doi.org/10.1016/j.engfracmech.2017.09.023