References
- Aabid, A. and Khan, S.A. (2018), "Optimization of heat transfer on thermal barrier coated gas turbine blade related", Proceedings of IOP Conference Series: Materials Science and Engineering, 370, 1-9. https://doi.org/10.1088/1757-899X/370/1/012022
- Aktaa, J., Sfar, K. and Munz, D. (2005), "Assessment of TBC systems failure mechanisms using a fracture mechanics approach", Acta Materialia, 53(16), 4399-4413. https://doi.org/10.1016/j.actamat.2005.06.003
- Al Ali, A.R. and Janajreh, I. (2015), "Numerical simulation of turbine blade cooling via jet impingement", Energy Procedia, 75, 3220-3229. https://doi.org/10.1016/j.egypro.2015.07.683
- Bacos, M.P., Dorvaux, J.M., Lavigne, O., Mevrel, R., Poulain, M., Rio, C. and Vidal-Setif, M.H. (2011), "Performance and degradation mechanisms of thermal barrier coatings for turbine blades : A review of onera activities", J. Aerosp. Lab, 3, 1-11.
- Bakan, E. and Vassen, R. (2017), "Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties", J. Thermal Spray Technol., 26(6), 992-1010. https://doi.org/10.1007/s11666-017-0597-7
- Bialas, M. (2008), "Finite element analysis of stress distribution in thermal barrier coatings", Surf. Coatings Technol., 202(24), 6002-6010. https://doi.org/10.1016/j.surfcoat.2008.06.178
- Choi, S.R., Hutchinson, J.W. and Evans, A.G. (1999), "Delamination of multilayer thermal barrier coatings", Mech. Mater., 31(7), 431-447. https://doi.org/10.1016/S0167-6636(99)00016-2
- Dautov, S.S., Shornikov, P.G., Rezyapova, L.R. and Akhatov, I.S. (2019), "Increasing thermal and mechanical properties of thermal barrier coatings by suspension plasma spraying technology", J. Phys.: Conference Series, 1281, 1-4. https://doi.org/10.1088/1742-6596/1281/1/012008
- Doleker, K.M., Ozgurluk, Y. and Karaoglanli, A.C. (2018), "Isothermal oxidation and thermal cyclic behaviors of YSZ and double-layered YSZ/La2Zr2O7 thermal barrier coatings (TBCs)", Surf. Coatings Technol., 351, 78-88. https://doi.org/10.1016/j.surfcoat.2018.07.069
- Gentleman, M.M. and Clarke, D.R. (2004), "Concepts for luminescence sensing of thermal barrier coatings", Surf. Coatings Technol., 188-189, 93-100. https://doi.org/10.1016/j.surfcoat.2004.08.005
- Hermosilla, U., Jones, I.A., Hyde, T.H., Thomson, R.C. and Karunaratne, M.S.A. (2009), "Finite element modeling of the development of stresses in thermal barrier coatings", Proceedings of 2009 International Conference on Sustainable Power Generation and Supply, 1-7. https://doi.org/10.1109/SUPERGEN.2009.5348018
- Hernandez, M.T., Karlsson, A.M. and Bartsch, M. (2009), "On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings", Surf. Coatings Technol., 203(23), 3549-3558. https://doi.org/10.1016/j.surfcoat.2009.05.018
- Hwang, S., Son, C., Seo, D., Rhee, D.-H. and Cha, B. (2016), "Comparative study on steady and unsteady conjugate heat transfer analysis of a high-pressure turbine blade", Appl. Thermal Eng., 99, 765-775. https://doi.org/10.1016/j.applthermaleng.2015.12.139
- Kakuee, O., Fathollahi, V., Oliaiy, P., Agha-Aligol, D. and Lamehi-Rachti, M. (2015), "Ion beam analysis of gas turbine blades: Evaluation of refurbishment quality", Bull. Mater. Sci., 38(2), 511-516. https://doi.org/https://doi.org/10.1007/s12034-015-0867-2
- Karaoglanli, A.C., Turk, A. and Ozdemir, I. (2016), "Isothermal oxidation behavior and kinetics of thermal barrier coatings produced by cold gas dynamic spray technique", Surf. Coatings Technol., 318, 72-81. https://doi.org/10.1016/j.surfcoat.2016.12.021
- Kulczyk-Malecka, J., Zhang, X., Carr, J., Carabat, A.L., Sloof, W.G., Van Der Zwaag, S., Cernuschi, F., Nozahic, F., Monceau, D., Estournes, C. and Withers, P.J. (2016), "Influence of embedded MoSi2 particles on the high-temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings", Surf. Coatings Technol., 308, 31-39. https://doi.org/10.1016/j.surfcoat.2016.07.113
- Kumar, V. and Kandasubramanian, B. (2016), "Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications", Particuology, 27, 1-28. https://doi.org/10.1016/j.partic.2016.01.007
- Kyaw, S., Jones, A., Jepson, M.A.E., Hyde, T. and Thomson, R.C. (2017), "Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings", Mater. Des., 125, 189-204. https://doi.org/10.1016/j.matdes.2017.03.067
- Lee, J.-M., Song, H., Kim, Y., Koo, J.-M. and Seok, C.-S. (2015), "Evaluation of thermal gradient mechanical fatigue characteristics of the thermal barrier coating, considering the effects of thermally grown oxide", Int. J. Precision Eng. Manuf., 16(7), 1675-1679. https://doi.org/10.1007/s12541-015-0220-0
- Li, G.-R., Yang, G.-J., Li, C.-X. and Li, C.-J. (2017), "A comprehensive mechanism for the sintering of plasma-sprayed nanostructured thermal barrier coatings", Ceram. Int., 45(12), 9600-9615. https://doi.org/10.1016/j.ceramint.2017.04.083
- Liu, J.H., Liu, Y.B., He, X. and Liu, L. (2016), "Study on TBCs insulation characteristics of a turbine blade under serving conditions", Case Studies in Thermal Engineering, 8, 250-259. https://doi.org/10.1016/j.csite.2016.08.004
- Ma, X. and Ruggiero, P. (2018), "Practical aspects of suspension plasma spray for thermal barrier coating on potential gas turbine components", J. Thermal Spray Technol., 27(4), 591-602. https://doi.org/10.1007/s11666-018-0700-8
- Mafeed, M.P., Salman Ali, M., Prabin, C., Ramis, M.K., Ali Baig, M.A. and Khan, S.A. (2012), "Optimum length for pin fins used in electronic cooling", Appl. Mech. Mater., 110-116, 1667-1673. https://doi.org/10.4028/www.scientific.net/AMM.110-116.1667
- Mao, J., Liu, M., Deng, C.G., Deng, C.M., Zhou, K.S. and Deng, Z.Q. (2017), "Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology", J. Eng. Mater. Technol., Transactions of the ASME, 139(4), 1-7. https://doi.org/10.1115/1.4036584
- Miller, R.A. (1997), "Thermal barrier coatings for aircraft engines: history and directions", J. Thermal Spray Technol., 6(1), 35-42. https://doi.org/10.1007/BF02646310
- Moon, H., Kim, K.M., Jeon, Y.H., Shin, S., Park, J.S. and Cho, H.H. (2015), "Effect of thermal stress on creep lifetime for a gas turbine combustion liner", Eng. Fail. Anal., 47, 34-40. https://doi.org/10.1016/j.engfailanal.2014.10.004
- Moskalenko, A.B. and Kozhevnikov, A.I. (2016), "Estimation of gas turbine blades cooling efficiency", Procedia Eng., 150, 61-67. https://doi.org/10.1016/j.proeng.2016.06.716
- Ogiriki, E.A., Li, Y.G., Nikolaidis, T., Isaiah, T.E. and Sule, G. (2015), "Effect of fouling, thermal barrier coating degradation, and film cooling holes blockage on gas turbine engine creep life", Procedia CIRP, 38, 228-233. https://doi.org/10.1016/j.procir.2015.07.017
- Padture, N.P., Gell, M. and Jordan, E.H. (2002), "Thermal barrier coatings for gas-turbine engine applications", Review: Mater. Sci., 296(5566), 280-284. https://doi.org/10.1126/science.1068609
- Rosler, J., Baker, M. and Volgmann, M. (2001), "Stress state and failure mechanisms of thermal barrier coatings: Role of creep in thermally grown oxide", Acta Materialia, 49(18), 3659-3670. https://doi.org/10.1016/S1359-6454(01)00283-X
- Rousseau, F., Quinsac, A., Morvan, D., Bacos, M.P., Lavigne, O., Rio, C., Guinard, C. and Chevillard, B. (2019), "A new injection system for spraying liquid nitrates in a low power plasma reactor: Application to local repair of the damaged thermal barrier coating", Surf. Coatings Technol., 357, 195-203. https://doi.org/10.1016/j.surfcoat.2018.09.069
- Sadowski, T. and Golewski, P. (2012), "The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation", Defect Diffusion Forum, 326-328, 530-535. https://doi.org/10.4028/www.scientific.net/DDF.326-328.530
- Sadowski, T. and Pietras, D. (2016), "Heat transfer process in jet turbine blade with functionally graded thermal barrier coating", Solid State Phenomena, 254, 170-175. https://doi.org/10.4028/www.scientific.net/SSP.254.170
- Saif, M., Mullick, P. and Imam, A. (2019), "Analysis and structural design of various turbine blades under variable conditions : A review", Adv. Mater. Res., 8(1), 11-24. https://doi.org/https://doi.org/10.12989/amr.2019.8.1.011
- Stecura, S. (1979), "Effects of compositional change on the performance of a thermal barrier coating system", Proceedings of the 3rd Annual Conference on Composite and Advanced Materials, Merritt Island, FL, USA, January.
-
Subramani, P., Padgelwar, N., Shetty, S., Pandit, A., Sreenivasulu, V., Arivazhagan, N., Duoli, W.U. and Manikandan, M. (2019), "Hot corrosion studies on detonation-gun-sprayed NiCrAlY and 80Ni-20Cr coatings on alloy X22CrMoV12-1 at
$600^{\circ}C$ ", Transact. Indian Inst. Metals, 20-23. https://doi.org/10.1007/s12666-019-01567-6 - Tang, W.Z., Yang, L., Zhu, W., Zhou, Y.C., Guo, J.W. and Lu, C. (2015), "Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure tbcs by a fluid-solid coupling method", J. Mater. Sci. Technol., 32, 452-458. https://doi.org/10.1016/j.jmst.2016.03.009
- Umair, S.M., Alrobaian, A.A. and Khan, S.A. (2018), "Numerical investigation of critical range for the occurrence of secondary peaks in the nusselt distribution curve", CFD Letters, 1(1), 12-27.
- Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C.C., Berghaus, J.O., Boulos, M., Brogan, J., Bourtsalas, A.C., Dolatabadi, A. and Dorfman, M. (2016), "The 2016 Thermal spray roadmap", J. Thermal Spray Technol., 25(8), 1376-1440. https://doi.org/10.1007/s11666-016-0473-x
- Zhao, S., Zhang, C., Wu, N. and Wang, H. (2011), "Quality evaluation for air plasma sprays thermal barrier coatings with pulsed thermography", Progress in Natural Science: Mater. Int., 21(4), 301-306. https://doi.org/10.1016/S1002-0071(12)60061-6
- Zhu, W., Cai, M., Yang, L., Guo, J.W., Zhou, Y.C. and Lu, C. (2015), "The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings", Surf. Coatings Technol., 276, 160-167. https://doi.org/10.1016/j.surfcoat.2015.06.061
- Zhu, W., Wang, J.W., Yang, L., Zhou, Y.C., Wei, Y.G. and Wu, R.T. (2017), "Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings", Surf. Coatings Technol., 315, 443-453. https://doi.org/10.1016/j.surfcoat.2017.03.012