초록
벌점화 추정 기법 중 adaptive LASSO 방법은 모형 선택과 모수 추정을 동시에 할 수 있는 유명한 방법으로 이미 정상 자기회귀모형에서 연구된 적이 있다. 본 논문에서는 이를 확장하여 확률보행과정과 같은 비정상 자기회귀모형에서 adaptive LASSO 추정량이 갖는 성질을 모의실험을 통해 연구하였다. 다만 비정상 자기회귀모형에서는 단위근의 존재 여부를 판단하는 것과 모형의 차수를 선택하는 것이 가장 중요하므로, 이를 위해 원 자기회귀모형이 아닌 ADF 검정에서 고려하는 회귀모형으로 변환하여 adaptive LASSO를 적용하였다. 일반적으로 Adaptive LASSO를 적용할 때 조절모수의 선택이 가장 중요한 문제이며, 본 논문에서는 교차검증, AIC, BIC 세 가지 방법을 이용하여 조절모수를 선택하였다. 모의실험 결과를 보면, 이 중에서 BIC가 최소가 되도록 선택한 조절모수에 대응되는 adaptive LASSO 추정량이 단위근의 존재 여부를 잘 판단할 뿐만 아니라 자기회귀모형의 차수 또한 비교적 정확하게 선택함을 확인할 수 있다.
In this paper, we study the adaptive least absolute shrinkage and selection operator (LASSO) for the unstable autoregressive (AR) model. To identify the existence of the unit root, we apply the adaptive LASSO to the augmented Dickey-Fuller regression model, not the original AR model. We illustrate our method with simulations and a real data analysis. Simulation results show that the adaptive LASSO obtained by minimizing the Bayesian information criterion selects the order of the autoregressive model as well as the degree of differencing with high accuracy.