DOI QR코드

DOI QR Code

On modified slope rotatability of central composite designs with two axial values

두 개의 축값을 갖는 중심합성설계의 수정기울기회전성에 관하여

  • Kim, Hyuk Joo (Division of Big Data & Financial Statistics, Wonkwang University)
  • 김혁주 (원광대학교 빅데이터.금융통계학부)
  • Received : 2019.08.16
  • Accepted : 2019.10.21
  • Published : 2019.12.31

Abstract

In this paper, we applied modified slope rotatability introduced by Victorbabu (2005) to the central composite design of second type, and studied related content. We suggested methods of constructing central composite designs of second type which have modified slope rotatability. Especially, this property has the advantage that it can be used to sequential experiments, because we can obtain central composite designs of second type which have modified slope rotatability by adding experimental points without changing the axial values to central composite designs of second type having Box-Hunter rotatability. We explained central composite designs of second type which have modified slope rotatability by using two examples.

본 논문에서는 Victorbabu (2005)가 소개한 수정기울기회전성을 제2종의 중심합성설계에 적용하여, 관련된 내용을 연구하였다. 이 성질을 갖는 제2종 중심합성설계를 구하는 방법을 제시하였다. 특히 Box-Hunter의 회전성을 갖는 제2종 중심합성설계에 축값의 변동 없이 실험점을 추가함으로써 수정기울기회전성을 갖는 설계를 만들 수 있으므로 축차적 실험에 이용할 수 있다는 장점이 있다. 두 가지의 예를 통해서 수정기울기회전성을 갖는 제2종 중심합성설계를 설명하였다.

Keywords

References

  1. Box, G. E. P. and Hunter, J. S. (1957). Multifactor experimental designs for exploring response surfaces, Annals of Mathematical Statistics, 28, 195-241. https://doi.org/10.1214/aoms/1177707047
  2. Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society, Series B, 13, 1-45.
  3. Cragle, R. G., Myers, R. M., Waugh, R. K., Hunter, J. S., and Anderson, R. L. (1955). The effects of various levels of sodium citrate, glycerol, and equilibrium time on survival of bovine spermatozoa after storage at $-79^{\circ}C$, Journal of Dairy Science, 38, 508-512. https://doi.org/10.3168/jds.S0022-0302(55)95005-0
  4. Hader, R. J. and Park, S. H. (1978). Slope-rotatable central composite designs, Technometrics, 20, 413-417. https://doi.org/10.1080/00401706.1978.10489695
  5. Kim, H. J. (2002). Extended central composite designs with the axial points indicated by two numbers, The Korean Communications in Statistics, 9, 595-605.
  6. Kim, H. J. and Park, S. H. (2006). Statistical properties of second type central composite designs, The Korean Journal of Applied Statistics, 19, 257-270. https://doi.org/10.5351/KJAS.2006.19.2.257
  7. Park, S. H. (2003). Design of Experiments (Revised ed), Minyoungsa, Seoul.
  8. Victorbabu, B. Re. (2005). Modified slope rotatable central composite designs, Journal of the Korean Statistical Society, 34, 153-160.
  9. Victorbabu, B, Re. and Narasimham, V. L. (1991). Construction of second order slope rotatable designs through balanced incomplete block designs, Communications in Statistics - Theory and Methods, 20, 2467-2478. https://doi.org/10.1080/03610929108830644