References
- Athanasopoulos, G., Ahmed, R. A., and Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism, International Journal of Forecasting, 25, 146-166 https://doi.org/10.1016/j.ijforecast.2008.07.004
- Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., and Petropoulos, F. (2017). Forecasting with temporal hierarchies, European Journal of Operational Research, 262, 60-74 https://doi.org/10.1016/j.ejor.2017.02.046
- Boylan, J. E. and Babai, M. Z. (2016). On the performance of overlapping and non-overlapping temporal demand aggregation approaches, International Journal of Production Economics, 181(A), 136-144. https://doi.org/10.1016/j.ijpe.2016.04.003
- Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed), Springer-Verlag.
- Casals, J., Jerez, M., and Sotoca, S. (2009). Modelling and forecasting time series sampled at different frequencies, Journal of Forecasting, 28, 316-342. https://doi.org/10.1002/for.1112
- Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on loess, Journal of Official Statistics, 6, 3-33.
- Dagum, E. B. and Bianconcini, S. (2016). Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation, Springer.
- Hyndman, R. J. (2019). Forecast: forecasting functions for time series and linear models. R package version 8.7. http://pkg.robjhyndman.com/forecast/
- Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series, Computational Statistics and Data Analysis, 55, 2579-2589 https://doi.org/10.1016/j.csda.2011.03.006
- Hyndman, R. J., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with Exponential Smoothing: The State Space Approach, Springer-Verlag, Berlin.
- Jose, V. R. R. and Winkler, R. L. (2008). Simple robust averages of forecasts: some empirical results, International Journal of Forecasting, 24, 163-169. https://doi.org/10.1016/j.ijforecast.2007.06.001
- Kim, Y. S. and Lee, M. J. (2014). The analysis of predicting traffic accident using ARIMA model. In Proceeding of the Korea Society of Civil Engineers Autumn Conference, 705-706.
- Kourentzes, N. and Petropoulos, F. (2018). MAPA: Multiple Aggregation Prediction Algorithm. R package version 2.0.4. https://github.com/trnnick/mapa/
- Kourentzes, N., Petropoulos, F., and Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies, International Journal of Forecasting, 30, 291-302. https://doi.org/10.1016/j.ijforecast.2013.09.006
- Park, J., Jang, I., Son, E., and Lee, S. (2011). Development of traffic accident forecasting models considering urban-transportation system characteristics, Journal of Korean Society of Transportation, 29, 39-56.
- Rossana, R. J. and Seater, J. J. (1995). Temporal aggregation and economic time series, Journal of Business & Economic Statistics, 13, 441-451. https://doi.org/10.2307/1392389
- Rostami-Tabar, B., Babai, M. Z., Syntetos, A., and Ducq, Y. (2013). Demand forecasting by temporal aggregation, Naval Research Logistics (NRL), 61, 489-500. https://doi.org/10.1002/nav.21598
- Spiliotis, E., Petropoulos, F., Kourentzes, N., and Assimakopoulos, V. (2018). Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption, Technical Report, National Technical University of Athens, Athens.
- Trabelsi, A. and Hillmer, S. (1989). A benchmarking approach to forecast combination, Journal of Business and Economic Statistics, 7, 353-362. https://doi.org/10.2307/1391532
- Young, S, W. (1967). Piecewise monotone polynomial interpolation, Bulletin of the American Mathmatical Society, 73, 642-643. https://doi.org/10.1090/S0002-9904-1967-11806-8